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Abstract
The recently proposed nonlinear wave model of Nadaoka et. al. (1997) is re-expressed in boundary fitted non-
orthogonal curvilinear co-ordinate system for simulating wave motions in domains with irregular boundaries.
The co-ordinate transformation converts an irregular physical domain into a rectangular computational domain,
which allows for accurate numerical computations using finite-differences approximations. Thus, the boundary
conditions for irregular vertical enclosures surrounding a typical physical domain, such as a port or harbour, are
satisfied accurately. This improved numerical treatment of the boundaries increase the accuracy of wave model
predictions of the velocities inside the domain and on the vertical enclosures, which in turn results in better
estimation of wave orbital velocities over the entire water depth. Comparisons of computational results with
experimental measurements of horizontal and vertical orbital velocities of nonlinear unidirectional waves
propagating over a submarine bar show good agreement and prove the superiority of the new wave model over
an improved Boussinesq model. These comparisons are taken to be indicative of the same order of accuracy for
orbital velocity predictions of directional wave motions, which are important for sediment transport predictions.

1.Wave Model
The wave model adopted in this work is the single-component form of the fully-dispersive weakly-nonlinear
wave equations of Nadaoka et. al. (1997). The wave model is valid for arbitrary depths, ranging from infinitely
deep to very shallow waters. Thus, the model is capable of simulating the second-order Stokes waves and
cnoidal waves equally well. The corresponding single-component forms of the continuity and momentum
equations of the wave model are

0u
g

C
t

2
p =






















ζ+⋅∇+

∂
ζ∂ r

,  (1)

( )
( ) ( ) ( ) ( )








⋅∇







 −
∇+⋅∇∇

−

∂
∂

=





 +⋅+

∂
∂

ζ+ζ∇+
∂
∂

u
k

CCC
u

k

CCC

t

wuu
2
1

t
w

gC
t
u

CC

2
gpp

2
gpp

22
pgp

rr

rr
r

 (2)

where u
r

 is the horizontal velocity vector and w the vertical component of velocity both at z=0. ζ is the free
surface elevation, h the local water depth as measured from the still water level, and ∇ the horizontal gradient
operator with (∂/∂x,∂/∂y) components.  CP , Cg, and k denote respectively the phase and group velocities and
wave number, computed according to the linear theory for a prescribed dominant frequency ω and a given local
depth h.
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2. Transformed Wave Equations
The boundary fitted curvilinear co-ordinate system (ξ,η), as seen in Figure 1, is now introduced. Here, ξ is taken
usually (not necessarily) in the direction of wave propagation while η is taken perpendicular to the ξ lines.

Figure 1: A typical example for co-ordinate transformation from the physical domain to the computational
domain.

The wave equations are transformed from the physical space (x, y) to the computational space (ξ,η) by the
following co-ordinate transformation relations Hoffman and Chiang (1995):
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The continuity (1) and momentum equations (2) are re-expressed in a general, curvilinear non-orthogonal co-
ordinates through above transformations; however, the Cartesian velocity components are not transformed
therefore the components of the momentum equation is still in Cartesian directions.  This gives strong
conservative formulation with less metric coefficients in the transformed equations, which read
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for continuity, and
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for x- and y- momentum equations, respectively. Here, u, v are the velocity components at the still water level in
the Cartesian coordinates.  P, Q, R, C, CX, CY, RHSX, and RHSY are defined as

( )
2

2
p R1C

C
ω

−
=  (7a)

( )( ) ( )( )







−

η∂
∂

η+−
ξ∂
∂

ξ
ω

= R1CR1C
1

CX 2
px

2
px2  (7b)



Marine Sandwave Dynamics - 23 & 24 March 2000 - Lille, France

11

( )( ) ( )( )







−

η∂
∂

η+−
ξ∂
∂

ξ
ω

= R1CR1C
1

CY 2
py

2
py2  (7c)

u
g

C
P

2
p ⋅










ζ+= v

g

C
Q

2
p ⋅










ζ+=

p

g

C
C

R =  (7d)









η∂τ∂

∂
η+

η∂τ∂
∂

η+
ξ∂τ∂

∂
ξ⋅−









η∂τ∂

∂
η+

ξ∂τ∂
∂

ξ+
η∂ξ∂τ∂

∂
ηξ+

η∂τ∂
∂

η⋅−









η∂ξ∂τ∂

∂
ξη+

η∂ξ∂τ∂
∂

ηξ+
η∂τ∂

∂
ηη+

ξ∂τ∂
∂

ξξ+
η∂τ∂

∂
η+

ξ∂τ∂
∂

ξ⋅−

η∂
∂

η+
ξ∂

∂
ξ=

uvv
CX

uuu
2

u
C

vvvvvv
C

SS
RHSX

2

x

2

y

2

y

2

xx

2

xx

3

xx2

3
2
x

3

yx

3

yx2

3

yx2

3

yx

2

xy

2

xy

xx

 (8a)









η∂τ∂

∂
η+

η∂τ∂
∂

η+
ξ∂τ∂

∂
ξ⋅−









η∂τ∂

∂
η+

ξ∂τ∂
∂

ξ+
η∂ξ∂τ∂

∂
ηξ+

η∂τ∂
∂

η⋅−









η∂ξ∂τ∂

∂
ξη+

η∂ξ∂τ∂
∂

ηξ+
η∂τ∂

∂
ηη+

ξ∂τ∂
∂

ξξ+
η∂τ∂

∂
η+

ξ∂τ∂
∂

ξ⋅−

η∂
∂

η+
ξ∂

∂
ξ=

vuu
CY

vvv
2

v
C

uuuuuu
C

SS
RHSY

2

x

2

y

2

y

2

xx

2

xx

3

xx2

3
2
x

3

yx

3

yx2

3

yx2

3

yx

2

xy

2

xy

yy

 (8b)

ξx, ξy, ... appearing in equations (3)-(7) are the grid metrics, and S is given by
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3. Numerical Approach
The transformed continuity and momentum equations (4-5-6) are discretized by finite difference approximations
using non-staggered grids, where the free surface displacement, the velocity components, and the grid metrics
are defined at the grid intersections. The second-order central-difference formulae are used for approximating all
the partial derivatives both in time and space. The basic algorithm is divided into two stages: In the first stage,
the velocity components are computed by solving the momentum equations (5-6) until a specific convergence
criterion is met. The solution of the velocity components requires the use of Thomas algorithm, which is quite
efficient in the solution of tridiagonal matrix systems. Then, using the final velocity components, the free surface
elevation is obtained from the continuity equation (4) at each time step. See Beji and Nadaoka (1995) for a
similar approach.

The boundary conditions on the free surface and on the bottom are automatically satisfied by the wave equations.
It then remains to specify the conditions on the incident and outgoing boundary and on the vertical enclosures
surrounding the domain. The conditions at the incoming boundary are easily specified by introducing an incident
wave field; likewise, the wall condition, which states that the velocity normal to the wall surface must vanish, is
satisfied easily in the transformed rectangular computational domain. The radiation condition usually presents
difficulties since there is no perfect radiation condition for nonlinear directional waves leaving the domain. Here,
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the second-order radiation condition of Engquist and Majda (1977) is used to minimise the artificially reflected
waves from the outgoing boundary.

A sample computation using the above scheme for the case of wave propagation over a topographical lens
(Whalin, 1972) is performed. The bathymetry is given as
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where [ ] 6.096y0fory)y(6.096G(y) 1/2 ≤≤−= . Figure 2 shows the bathymetry according to these
definitions.
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Figure 2: A perspective view of the bathymetry for Whalin’s experiments.

Since the physical domain itself in this case is rectangular, this simulation should be regarded as a simple testing
of the general numerical scheme for the special case of a rectangular domain. Among the various measurements
we have chosen the case for incident waves of T=2 seconds period and a=0.75 cm amplitude. Figure 3 shows the
fully-developed wave field over this bathymetry and Figure 4 shows the comparisons with Whalin’s
measurements for harmonic amplitudes along the centerline of the wave basin. As it can be seen from Figure 4,
the wave model predictions agree considerably well with the measurements hence show that the general model
developed here works correctly for the special case of a rectangular domain.
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Figure 3: A perspective view of the fully-developed wave field for incident waves of T=2 seconds period and
a=0.75 cm amplitude.
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Figure 4: Comparisons of the computed harmonic amplitudes with Whalin’s measurements for incident waves of
T=2 seconds period and a=0.75 cm amplitude. Solid line: computation, scatter: measurement (circle: first
harmonic, triangle: second harmonic, and square: third harmonic).

4. Comparisons with Experimental Measurements of Orbital Velocities
In order to test the reliability of the wave model adopted in this work, a series of measurements of horizontal and
vertical orbital velocities for nonlinear waves propagating over a submarine bar (Nadaoka et. al., 1994) is now
compared with the computations using the 1-D forms of the wave equations. Also, comparisons are made with
the predictions of an improved Boussinesq model (Madsen and Sørensen, 1992; Beji and Nadaoka, 1996). The
results clearly show the superiority of the present wave model over the improved Boussinesq model, which
usually is regarded as one of the most reliable models for simulating wave motions in the near shore zone.
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Wave Propagation Direction
Station 7

30 cm

Figure 5: Definition sketch of the wave flume for nonlinear wave propagation over a submarine bar. Incident
wave height is 2cm and wave period is 1.5 s.

The experimental setup consists of a submerged bar with an upslope of 1:20, followed by a horizontal crest of
2m long and a downslope of 1:10. The water depth in the deepest section is 0.3m, which reduces to 0.1m over
the horizontal crest and again increases to 0.3 m behind the bar, as seen in Figure 5.
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Figure 6: Comparisons of the computational results using the wave model adopted in this work with the
experimental measurements of horizontal and vertical velocity components at station 7 behind the submerged
bar. Left column horizontal velocities and right column vertical velocities at z=2cm, z=16cm and z=26cm below
the still water level.
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The experimental data compared here is for waves with incident wave height H=2cm and period T=1.5s. Since
the waves steepening in the shallowest section are decomposed into their harmonics behind the bar, the waves
observed at station 7 include shorter free waves, which may be classified as deep water waves. This important
aspect requires a wave model with good dispersion characteristics in order to predict velocities accurately. Here,
we compare the computations results of our wave model and those of the improved Boussinesq model with the
experimental measurements of orbital velocities at station 7 only since this particular station represents the most
challenging case among all others due to the reasons indicated above. The comparisons are given for three
different water depths; that is, 2cm, 16cm, and 26cm below the still water level.

As seen above in Figure 6, the predictions of the model simulations agree well with the experimental
measurements both for horizontal and vertical velocity components at all the water levels. The same
comparisons, performed using the improved Boussinesq model, are given below in Figure 7. However, the
results do not agree with the measurements as well as the previous computations do. Thus, these comparisons
clearly show the superiority of the present model over the improved Boussinesq model in predicting the orbital
velocities for complicated wave transformations. This point is essential in making accurate computations of
sediment transport rate due to waves.
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Figure 7: Comparisons of the computational results using the improved Boussinesq model with the experimental
measurements of horizontal and vertical velocity components at station 7 behind the submerged bar. Left column
horizontal velocities; right column vertical velocities at z=2cm, z=16cm and z=26cm below the still water level.

Conclusion

The recently developed nonlinear wave model of Nadaoka et.al. (1997) has been re-expressed in the boundary
fitted curvilinear co-ordinate system to achieve accurate treatment of the boundary conditions for irregular
physical domains. The numerical scheme based on the transformed wave equations is used for a sample
simulation of nonlinear wave propagation over a topographical lens and the results are found to be quite
acceptable. Furthermore, for the special case of 1-D motion, the numerical simulations of orbital velocities
behind a submerged bar  are compared with the measurements of  Nadaoka et. al. (1994). The results are very
satisfactory and clearly better than the simulations performed with a Boussinesq model. Thus, it may be
concluded that the model adopted here shows promising aspects for using it in future practical application,
especially in the estimation of sediment transport rates via orbital velocities.
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