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Spectral evolution in waves traveling over a shoal
J.A. Batjes® and 5. Beji™

Abstract

Nonlinear aspects of breaking and non-breaking waves propagating over a
submerged trapezoidal bar have been investigated by laboratory experiments, with special
emphasis on the generation of high-frequency energy. Data collected from the
measurements are used for computing spectral and bispectral estimates in order to assess
the contribution of wave breaking to the spectral evolution, as distinguished from that
of the conservative nonlinear interactions. It is found that wave breaking itself, even in
the case of plunging breakers, does not play a decisive role in the evolution of the
spectral shape, but contributes by simply extracting energy in almost averaged manner.
An approach is described to utilize this observation by using a semi-empirical
formulation for dissipation due to breaking in conjunction with a weakly nonlinear
numerical model.

1.Introduction

Harmonic generation in waves passing over submerged obstacles has long been
known both experimentally and theoretically. Jolas (1960) carried out experiments with
a submerged shelf of rectangular cross section and observed harmonics of a simple
incident wave on the transmission side [1]. A few years later, in nonlinear optics, an
analogous phenomenon concerning the transmission of a laser beam through a quartz
crystal was explained theoretically by Armstrong er al. (1962). At about the same time,
Phillips [2] gave the theoretical foundations of nonlinear resonant interactions between
discrete wave components for deep water waves. Hasselmann (1962-63) extended the
theory to the case of a continuous spectrum [3]. Mei and Unliiata (1971), Tappert and
Zabusky (1971), Johnson (1972), and Bryant (1973) made important contributions which
further clarified the nonlinear interactions in shallow water waves [1, 4, 5].

Despite these achievements, the incorporation of wave breaking into these models
remains basically unsolved. This deficiency severely limits their range of applicability,
especially in coastal waters. While for non-breaking waves the generation of high
frequency wave energy may entirely be attributed to conservative nonlinear effects, there
have been doubts about the role of breaking. Some researchers hypothesized it was the
wave breaking that controlled the phenomenon rather than conservative nonlinear
interactions [6, 7]. The aim of the ongoing work reported here is to help resolve these
questions and to contribute to the development of capabilities for numerical modeling
of the most important processes observed.

The organization of the paper is as follows. The next section gives a brief
description of the experimental arrangements, the bottom profile, and the wave
conditions for the measurements. Section 3 begins with some descriptive features of the
experiments. Measured power spectra at selected locations and the corresponding spatial
variations of potential energy over the submerged bar are given next. The numerical
model is introduced in Section 4 and numerical simulations of nonlinear (non-breaking)
random waves are compared with the measurements both in time and in spectral domain.
Also, an approach is sketched for predicting the spectral evolution of breaking waves.
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2.Experiments

In order to assess the contribution of wave breaking to the generation, transfer,
and dissipation of high frequency energy observed in the power spectra of waves
traveling over submerged bars, tests were performed both for non-breaking and breaking
(spilling and plunging) waves.

The experiments were carried out in the wave-flume of the Department of Civil
Engineering, Delft University of Technology. The flume is 37.7 m long and 0.8 m wide.
In its midsection, a trapezoidal submerged bar was built (see Figure 1.) At the downwave
end a gently sloping spending beach was present (from previous experiments). The still-
water depth was 0.4 m over the original, horizontal flume bottom and had a minimum
of 0.10 m above the bar crest. Periodic and irregular input waves were used, the latter
with a JONSWAP-type spectrum and a custom-made, very narrow band spectrum which
eliminated effects of high-frequency tail in the input spectrum. Peak frequencies were
f,=0.4Hz and f,=1.0Hz. Measurements of the free surface elevations were made with
parallel-wire resistance gages at 8 different locations as sketched in Figure 1.
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Figure 1 Longitudinal cross-section of wave flume and locations of wave gages.

3.Experimental Results

3.1 Descriptive features

Figures 2a and 2b exhibit the evolutions of the "long" (f=0.4 Hz) and "short"
(f=1.0 Hz) waves over topography for monochromatic waves. The records were taken
at the stations shown in Figure 1.

The long waves (f=0.4 Hz), once having gained in amplitude, gradually gave rise
to one or more waves traveling at nearly the same speed with them in their tails. The
evolution continued as the waves propagate over the upslope and horizontal part of the
shoal. This phenomenon is reminiscent of the soliton formation behind a solitary wave,
a subject which has been studied extensively [8,9]. As these finite amplitude long waves
with their accompanying tails moved into the deeper water -downslope- they decomposed
into several smaller amplitude waves of nearly harmonic frequencies. These released
harmonic components then moved at different phase speeds but continued to exchange
energy for several wave-lengths; the amplitudes of some of the higher frequency
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components even became larger than that of the primary wave itself.

The short waves (f=1.0 Hz), on the contrary, did not develop any tail waves as
they grew in amplitude but kept their vertical symmetry and appeared as higher-order
Stokes waves. Decomposition in the deeper region was not nearly drastic as that of the
longer waves and only relatively smaller amplitude second order harmonics were
released.

It is readily seen in the records in Figure 2 that wave breaking does not alter the
evolution of the wave forms drastically. From a practical point of view this is encouraging
because it implies the possibility of combining a conservative (weakly) nonlinear model,
such as a Boussinesq model, with a semi-empirical formulation of the dissipated energy
in averaged form, This line of development is pursued presently; preliminary results are
given below.

3.2 Spectral evolution

As indicated in Section 2, irregular waves were generated with two different types
of spectra. Figure 3 shows the spectral evolutions for the breaking, spilling, and plunging
waves (fp=0.4 Hz) at three selected stations for the case of the custom-made narrow
band spectrum, for nonbreaking waves, spilling breakers and plunging breakers. It can
be observed that the primary wave energy at any given station remains clearly separated
from that of the higher frequency part generated by nonlinear interactions. It is
important to notice that the overall features of the spectral shape evolution for different
wave conditions (nonbreaking or breaking) do not differ appreciably. Further clarification
is offered in Figure 4 where the spatial variations of normalized potential energy of the
total, the primary, and the higher frequency components are plotted. In computing the
primary wave energy the range of integration is taken between 0.0Hz and 0.6 Hz while
for higher frequency energy it is between 0.6 Hz (= 1'%21)) and 2.5 Hz. The total energy
is obtained simply by adding the two. In each case the variations are normalized with
respect to the total measured at station 1.

3.3 Bispectral Evolution

Bispectral estimates for a JONSWAP-type incident wave spectrum for non-
breaking and plunging waves at selected stations were computed. The results of these
computations are outlined below.

In the case of non-breaking waves, at station 3, where the waves enter the
shallowest region, primary frequency components interact strongly with themselves, fp—fp,
and provide a driving mechanism for the generation of the second harmonic components,
2f,. At station 5, the second and third harmonic components, 2f, and 3fp, grow strong
enough to engage in appreciable interactions with the primary waves components, f,-2f,
and f-3f,. Although not as strong, the interactions of the second harmonics with
themselves, 2f,-2f,, are also visible. At station 7,in the deeper region behind the bar, the
strength of the interactions is diminished, and the primary wave component interactions,
f,-f,, are no longer dominant because the amplitudes of higher frequency waves are now
comparable with those of the peak frequency components.

In the case of plunging breakers, at station 3, the nonlinear interactions are
already spread to encompass the higher frequencies. This is not surprising because the
significant wave height is now 1.7times greater than its counterpart in the non-breaking
case. However, as we move to station 4 we see a sharp decrease -nearly 50%- in the
strength of nonlinear interactions. This is a direct consequence of wave breaking: clipping
wave heights by breaking reduces the degree of nonlinearity. At station 7 the strength
of interactions is only a fraction of those in the previous cases but not expended
completely. Indeed the significant wave height in this case at this particular station is still
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Figure 3 Spectral evolutions for non-breaking, spilling, and plunging waves.
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Figure 4 Spatial variations of total potential energy of the primary wave field and of

higher frequencies.
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1.4 times greater than the one measured for non-breaking waves. The strength of the
nonlinear interactions is likewise greater.

4.Numerical modeling

4.1 Introduction

The observation that in our experiments the evolution of the spectral shape is not
significantly affected by wave breaking suggests the possibility of using a (non-spectral)
model for the dissipation of total wave energy by breaking, in conjunction with a
conservative (potential-flow) model incorporating nonlinear wave-wave interactions. This
development is in progress.

4.2 Numerical model

As a first step, a conservative nonlinear wave propagation model has to be chosen.
"Exact" nonlinear models solving the full governing equations [10] are considered to be
too demanding in computational effort in view of the intended operational use
(ultimately). Instead, a Boussinesq type model was chosen because it does contain
nonlinearity and it is suited for shallow-water conditions. We used it in the following

form:

u, +uu,+gg,= %hz Uyee *hhu, +bh? (U, +gl,) 4

o+ [ (hel)ul =0

where { denotes the surface displacement and u the vertically averaged horizontal
velocity. For b=0 the momentum equation reduces to its standard form as it was derived
by Peregrine [11] for a gently sloping bottom. For b=1/15 a major improvement for the
dispersion characteristics is achieved. This extension to the original Boussinesq equations
was first suggested by Witting [12] and then recapitulated by Madsen er al.[13]. A
mathematical model with good dispersion characteristics is essential in this study because
the waves decomposing behind the submerged obstacle generate free high frequency
components which in essence may be regarded as relativelv deep water waves.

In the numerical treatment of the governing equatior.  vcept for some minor but
crucial adjustments, we basically followed the guidelines given in Peregrine (1967).
Details of the numerical scheme will be reported elsewhere.

In figure 5a measured surface elevations are compared with the computational
results for non-breaking but nonlinear random waves at selected stations. Figure 5b
shows the comparisons for the measured and computed spectra at the same stations. The
agreement is remarkable and justifies our choice of the governing equations.

4.3 Breaking waves

In the previous part we emphasized the overall similarity observed in the spectra
evolution of breaking and non-breaking waves and substantiated it with laboratory
measurements. The results clearly suggested the crucial point that for sufficiently high
nonlinearity the spectral evolution for different wave conditions differed only by a scaling
factor. This in turn implies that in this definite range it is possible to predict the spectral
evolution of a certain wave field from the knowledge of another wave field provided that
appropriate scaling is used and that the overall energy loss due to breaking is accounted
for. This line of attack is presently in progress.
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5.Conclusions

Spectral and bispectral estimates computed from laboratory measurements are
analyzed to clarify the effects of wave breaking on the inherently nonlinear phenomenon
of high frequency energy generation and transfer in the power spectra of waves traveling
over submerged profiles. It is found that wave breaking merely dissipates energy in
averaged manner and does not introduce drastic alterations to the spectral shape.
However it does reduce the strength of nonlinear interactions severely by clipping the
wave heights. In this respect breaking works, as in the classical sense, as a limiting
mechanism.

A practical implication of these findings is the apparent possibility of combining
a weakly nonlinear non-dissipative model with a semi-empirical dissipation formulation
for the total energy. This is the subject matter of ongoing research.
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