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A new numerical scheme for improved Businnesque 
equations with surface pressure

Deniz Bayraktar & Serdar Beji
Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey

In this work an improved Boussinesq model with a surface pressure term is discretized by a new approach. 
By specifying a single parameter the proposed discretization enables the user to run the program either in 
the long wave mode without dispersion terms or in the Boussinesq mode. Furthermore, the Boussinesq 
mode may be run either in the classical Boussinesq mode or in the improved Boussinesq mode by setting 
the dispersion parameter appropriately. In any one of these modes it is possible to specify a fixed or a 
moving surface pressure for simulating a moving object on the surface. The numerical model developed 
here is first tested by comparing the numerically simulated solitary waves with their analytical counter-
parts. The second test case concerns the comparison of the numerical solutions of moving surface pres-
sures with the analytical solutions of the long wave equations for all possible modes (long wave, classical, 
and improved Boussinesq).

a pressure disturbance moving at constant speed 
in a channel with a variable cross-channel depth 
profile by using Lynett et al [8] and Liu & Wu [7]’s 
 COULWAVE long wave model. The surface dis-
turbance may come from a moving free surface 
object, bottom movement, or a moving object in 
between. The first case is associated with a moving 
surface pressure which is the main problem to be 
investigated in this study using Beji and Nadaoka’s 
[5] alternative derivation. First of all the numeri-
cal model is verified for different test cases, such as 
comparing the numerically simulated solitary waves 
with their analytical counterparts.Then numerical 
solutions of all possible modes (long wave, classical, 
and improved Boussinesq) for moving pressures are 
compared with the analytical solutions. The work 
is currently being carried out to extend the scheme 
to 2-D case with realistic surface pressure forms so 
that waves generated by ship-like objects may be 
simulated. 

2 IMPROVED BOUSSINESQ EQUATIONS

Dispersion relation of Peregrine’s system [2] is 
an accurate approximation to Stokes first order 
wave theory for very small values of the dispersion 
parameter μ . Madsen et al [3] improved disper-
sion characteristics of this system by adding extra 
dispersive terms to the momentum equations as 
expressed in terms of depth integrated velocities 
P h u( )h +h ))  and Q h v( )h +h η . The form of the 
dispersion relation is determined by matching the 

1 INTRODUCTION

The earliest depth-averaged wave model that 
included weakly dispersive and nonlinear effects 
was derived by Boussinesq (1871), in which the non-
hydrostatic pressure was linearized and included in 
the momentum equations. The original equations 
were derived for constant depth only. Later, Mei and 
LeMeháute [1], Peregrine [2] derived Boussinesq 
equations for variable depth. While Mei and LeMe-
háute used the velocity at the bottom as the depend-
ent variable, Peregrine used the depth- averaged 
velocity and assumed the vertical velocity varying 
linearly over the depth. Due to wide popularity of 
the equations derived by Peregrine, these equations 
are often referred to as the standard Boussinesq 
equations for variable depth in the coastal engineer-
ing community. The standard Boussinesq equations 
are valid only for relatively small kh and H h/  val-
ues where kh and H h/  represents the parameters 
indicating the relative depth (dispersion) and the 
wave steepness (nonlinearity), respectively.  Madsen 
et al [3] and Madsen and Sørensen [4] included 
higher order terms with adjustable coefficients into 
the standard Boussinesq equations for constant and 
variable water depth, respectively. Beji and  Nadaoka 
[5] gave an alternative derivation of  Madsen et al’s 
[4] improved Boussinesq equations. Liu & Wu [7] 
presented a model with specific applications to ship 
waves generated by a moving pressure distribution 
in a rectangular and trapezoidal channel by using 
boundary integral method. Torsvik [9] presented 
a numerical investigation on waves  generated by 
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dispersion characteristics to linear wave theory. 
Later, this procedure has been extended to the case 
of variable depth by Madsen and Sørensen [4]. 
Alternatively, Beji and Nadaoka [5] introduced a 
slightly different method to improve the dispersion 
characteristics by a simple algebraic manipulation 
of Peregrine’s work for variable depth.

2.1 Derivation of Beji and Nadaoka’s improved 
Boussinesq equations

Following the procedure given by Peregrine [2] the 
continuity and momentum equations are,
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According to Beji and Nadaoka the second 
order terms are replaced with their equivalents in 
the Boussinesq type equations as these equations 
are the result of an ordering process with respect 
to two parameters, which are ε  and μ2. As given by 
Beji and Nadaoka [5] a simple addition and sub-
straction in equation (2) gives
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where β  is a scalar to be determined from the dis-
persion relation. Instead of a full replacement, a 
partial replacement of the dispersion terms are 
made so a form with better dispersion characteris-
tics is obtained. Using ut g= − ∇η  for replacing the 
terms proportional to β  gives
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which is a momentum equation with mixed dis-
persion terms. Setting β = 0 recovers the original 

equation, while β = −1 corresponds to replacing ut 
with − ∇g η  in equation (2). Equations (2) and (4) 
constitute the improved Boussinesq Equations.

2.2 Specification of dispersion parameter

Linearized 1-D Boussinesq Equations for mildly 
varying depth is formulated as follows. The conti-
nuity equation in expanded form
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The momentum equation can be expanded as
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where h x t∂ ∂h ∂ ∂ ∂x∂ ∂ u2  is the linear shoaling term 
while h x t2 3 2x∂ ∂u3u / ∂  is the linear dispersing term. 
Linearized 1-D Boussinesq Equations for constant 
depth simplify to the following equations.
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Combining equations (6) and (7) by cross-
 differentiation the 1-D Boussinesq equations for 
constant depth is obtained as
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where h x t2 4 2 2/ ∂ ∂4 / ∂η  is the linear dispersion 
depth. Water waves of different wave lengths travel 
with different phase speeds, a phenomenon known 
as frequency dispersion. For the case of infinitesimal 
wave amplitude, the terminology is linear frequency 
dispersion. The frequency dispersion characteris-
tics of a Boussinesq-type of equation can be used 
to determine the range of wavelengths for which it 
is a valid approximation. Assume η η ( )which itwhich it

ω
0η ei( ωω±  

so that η ω ηttηη ie ( )ωkx tωω±2ωω 0η , η ηxxηη ik eη ( )ωkx tωω±2
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,
ωkx tωω2 2ωω 0η . Substituting these 

expressions into equation (9) gives
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which can be rewritten as,
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since − ≈ −12 21( )+ 21 μ22 μ22  for small values of μ2. 
Since ω = kc ,
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Here k h2 2h 3/  shows the correction to the wave 
celerity due to the inclusion of the weak disper-
sion effect. Considering the improved Boussinesq 
equations, in linearized forms equations (2) and (4) 
yield the following dispersion relation evaluated by 
Beji and Nadaoka [5]:
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where ω is the wave frequency, k k kx yk k2 2k 2+kxk2k  
and kxk , kyk  are the components of the wave number 
vector. Equation (13) is specified according to 
matching the resulting dispersion relation with a 
second order Padé expansion of the linear theory 
dispersion and β  is determined from this second 
order Padé expansion of the linear theory disper-
sion relation ω 2ωω / =gk khtanh :
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In order that Equation (13) be identical with 
Equation (14) β  should be set to 1 5/ . Figure 1 
compares various values of dispersion parameters 
with the exact expression of linear theory. Among 
these asymptotic expansions, the one correspond-
ing the Padé type expansion is the best. Thus, when 
β = /1 5/ , the model may propagate relatively shorter 
waves (h/ =λ 1) with acceptable errors in amplitude 
and celerity.

3 A NEW DISCRETIZATION SCHEME 
FOR 1-D IMPROVED BOUSSINESQ 
EQUATIONS

The finite difference method is the most natural 
way of solving a PDE directly in an approximate 

manner. The idea behind this is to discretize the 
continuous time and space into a finite number of 
discrete grid points and then to approximate the 
local derivatives at these grid points with finite 
difference schemes. For numerical modeling, the 
discretization of the variables u , v  and η  are neces-
sary in order to solve momentum and continuity 
equations. Arakawa C grid which is shown in Fig-
ure 2, is the most appropriate system since it ena-
bles the discretization of the continuity equation in 
the most accurate manner. Here, u  and η  represent 
the horizontal velocity and the free surface dis-
placement respectively. The surface displacement 
is obtained from an semi-explicit discretization of 
the continuity equation which is,
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Multiplying both sides of the continuity equa-
tion by Δt and differentiating with respect to x 
gives:
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where k  denotes the time level. It should be noted 
that this equation is centered at ηi

k+ /1 2/ .
The momentum equation which is solved for u  

is
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Discretization of  the momentum equation is 
given as follows noting that all spatial deriva-
tives are centered at the grid point where ui

k  is 
located.

Figure 2. The Arakawa-C grid.

Figure 1. Dispersion curves for various values of dis-
persion parameter β  compared with linear theory.
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Substituting ( / ) i j
k+∂ ∂/ 1η  from equation (16) into 

the discretized x-momentum equation (18) and mul-
tiplying by Δt gives the expression which is essentially 
a tridiagonal matrix system for ui

k
−
+
1
1, ui

k+1 and ui
k
+
+
1
1.

4 TEST CASES FOR THE VERIFICATION 
OF THE BOUSSINESQ MODEL

4.1  An analytical solution of Boussinesq 
equations: Solitary waves

The most elementary analytical solution of Boussi-
nesq equations is a solitary wave. A solitary wave 
is a wave with only crest and a surface profile 
lying entirely above the still water level. It is nei-
ther oscillatory nor does it exhibit a trough. The 
solitary wave can be defined as a wave of trans-
lation since the water particles are displaced at a 
distance in the direction of wave propagation as 
the wave passes. A true solitary wave cannot be 
formed in nature because there are usually small 
dispersive waves at the trailing edge of the wave. 
On the other hand, long waves such as tsunamis 
and waves resulting from large displacements of 
water caused by such phenomena as landslides 
and earthquakes sometimes behave approximately 
like solitary waves. Also, when an oscillatory wave 
moves into shallow water, it may often be approxi-
mated by a solitary wave. In this situation, the wave 
amplitude becomes progressively higher, the crests 
become shorter and more pointed, and the trough 
becomes longer and flatter. Only one param-
eter, wave steepness, ε = /H d/  is needed to specify 
a solitary wave because both wavelength and 
period of solitary waves are infinite. To the low-
est order, the solitary wave profile varies as sech q2 ,

where q d d/( )H d/H ( )C ) 2/)H d/H ( )x C−Ct1 2/ . The free-surface 
elevation, particle velocities, and pressure may be 
expressed respectively as follows
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where ΔpΔ  is the difference in pressure at a point 
under the wave due to the presence of the solitary 
wave. To second approximation, this pressure dif-
ference is given by
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where YsYY  is the height of the surface profile above 
the bottom. Since the solitary wave has horizon-
tal particle velocities only in the direction of wave 
advance, there is a net displacement of fluid in 
the direction of wave propagation. The solitary 
wave is a limiting case of the cnoidal wave. Cnoi-
dal waves may be viewed as the nonlinear coun-
terparts of the sinusoidal waves in shallow water. 
When k K k K2 KK, =K ∞( )k(kk ( )1( )11 , and the elliptic 
cosine reduces to the hyperbolic secant function 
and the water surface YsYY  measured above the bot-
tom reduces to
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H
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and the free surface is given by,
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The numerical tests presented here are done using 
the numerical scheme developed in Section 3. The 
water depth is constant and both the original Boussi-
nesq equations ( )β  and the improved Boussin-
esq equations ( )β  are used for simulations. As 
it can be seen in Figures 3 and 4 the analytical and 
computational results agree very well for both β = 0 
and β = /1 5/ , although from analytical point of view, 
the solitary waves corresponding to the improved 
Boussinesq equations should be slightly different. 
Differences in height between analytical and com-
putational results are shown in Figure 5 for β = 0 
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(c) β = 0, = 0.3

Figure 3. Solitary waves for different wave heights when 
β = 0.

Figure 5. Relative error of the calculated wave height 
versus nonlinearity parameter ε .

by calculating the relative error percentage for dif-
ferent ε  values. It is observed that as nonlinearity 
parameter, ε , increases, the relative error percentage 
increases linearly up to 13% for ε = .0 4. .

4.2 Comparison of analytical solution to linear 
shallow water wave equations

The linearized long-wave equations in 1-D in pres-
ence of a pressure term are given by,
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Figure 4. Solitary waves for different wave heights when 
β = /1 5/ .
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⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ρ

(32)

Substituting a3 into the expression η3 3ηη =a F33 ( )x V− tVV  
results in η ρ3 0

2
ηη33

/ρhP F ( )Vt ( )2−gh V . u1 and u2 are 
found by substituting η1 and η2 into the continuity 
equation (25) respectively. After these substitution 
u a c F t h1 1a 0 0Fa c F1a F /( )x c t0x cxx  and u a c F t h2 2a 0 0F /( )x 0x + c t0c .  
The boundary conditions are,

u u1 2u 3 0+ +u2u =  
(33)

η η1 2η 3 0+ +η2η =  (34)

Substituting free and forced solutions into (33) 
and (34) for t = 0 and solving for a1 and a2 gives

a
hP
c gh V

1
0 0PP

0
22

=
⎛
⎝
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⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

( )c V0c
ρ

 

(35)
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c gh V
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( )c V0c
ρ

 

(36)

Finally, for three different wave profiles the fol-
lowing expressions for η  are obtained.

η
ρ

1
0 0

0
2 0
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η
ρ
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0

2
= −

−⎛
⎝⎜
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⎞
⎠⎟
⎞⎞
⎠⎠

hP0

gh V
F ( )−x Vt

 

(39)

The corresponding velocities are computed 
likewise. Let’s assume that the moving pressure 
field is represented by F ExpEE( ) [ ]χ ExpE [ ( )/x 2  
where χ = x V− tVV . In this case we choose, h m , 
P0PP 4905= − , g m s/9 81 2 and ρ = /1000 3kg m . The 
length of the computational domain is 20000 m,
grid size is 20 m and time step is 1 s . Solutions 
for linear shallow water waves at t = 50 and 100 s  
and for the velocities, V = 10 and 18 m s/  are in 
Figure 6.

The same analytical solution is compared with 
one dimensional Boussinesq model when β = /1 5/  
for the velocities V = ,0 1, 0 and 18 m s/  at t = 50 
and 100 s . As it can be seen from Figure 7, the 
analytical and numerical solutions are again in 
agreement.

ηt xη h+ =xhu 0  (25)

u Pt xg+ =g xg − ∇g x ρ
1

 
(26)

where η  is free surface elevation, u  horizontal 
velocity component, P surface pressure, h constant 
water depth and g  gravitational acceleration. Due 
to the moving pressure, two different free surface 
waves moving in opposite directions are  generated. 
The mathematical problem can be separated as 
the free surface wave problem and the pressure 
wave problem. Assume that the moving pressure is 
P P FP F0PPPP ( )x Vt−x  and for the two free waves the pro-
files are η1 1 0= F1a F1 ( )0x c− t  and η2 2η 0= 2F2 ( )0+x c+ t .  
Besides these free waves the forced wave profile is 
η3 3= a F33 ( )x V− tVV  and the velocity of the forced wave 
is u b F3 3bbb F3bb ( )x Vt−x . For the right moving sinusoidal 
wave, wave surface profile can be described as,

η ωkx tωω0 i ( )  (27)

where a0 is the wave amplitude, k  is the wave 
number. Differentiating the above equation with 
respect to x gives

η ωxηη k k tωω0 cos( ) 
(28)

From the momentum equation (26) for the 
unforced free wave case (no pressure) u gt xgηxg . 
Substituting ηx into this expression

u gka kx tt −0 cos( )ωtt  (29)

Integrating over time, the horizontal velocity u  
is found as,

u
gk

a kx t= a kx
ω

ωtt0 si ( )
 

(30)

where a kx0 si ( − ωtωω ) represents η  itself  and 
ω = kc . Substituting these expressions, the horizon-
tal velocity is found as, u c hη / . Therefore, right 
moving wave velocity is u c h1 0c 1η1 /  and the left 
moving wave velocity is u c h2 0c 2η2 / . Now consid-
ering the forced wave case with pressure gradient 
and substituting η3 into the continuity equation (25) 
by taking the time derivative, u Va FV t h3 3VaVVVa FVVVaVV /( )x VtVVx . 
Noting that u b F3 3bbb F3bb ( )x Vt−x  gives

a
hP

gh V
3

0PP
2

= −
−⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ρ

 

(31)

Substituting u b F3 3bbb F3bb ( )x Vt−x  and P P FP F0PPPP ( )x Vt−x  
into the momentum equation (26) by taking the 
derivative with respect to t  and x respectively, 
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In Figure 8 the average (using 500 points) error 
percentages between analytical and computational 
surface elevations are shown for five different 
pressure field speeds V = 5, 10, 15, 20 and 25 m/s 
which corresponds to depth Froude numbers, 
0.4, 0.7, 1.1, 1.4 and 1.8 at t = 50 s when β = /1 5. 
Results show that around Froude number , the 
relative error percentage takes its maximum value 
and as Froude number exceeds 1, the error per-
centage decreases.
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Figure 6. Comparison of numerical and analytical solu-
tions of linear shallow water waves generated by a mov-
ing pressure at t s50  and t s100 .
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Figure 7. Comparison of analytical solution with linear 
shallow water waves and 1-D Boussinesq solution gener-
ated by a moving pressure when β = /1 5/  at t s50  and 
t s100 .

Figure 8. Average relative error of the calculated and 
analytical surface elevation versus Froude number.
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