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ABSTRACT   
 
Boussinesq equations with improved dispersion characteristics are used 
to simulate the generation and propagation of waves due to moving 
pressure fields. With surface pressure terms in the momentum 
equations the numerical scheme is first run for a moving 3-D 
hemispherical pressure field for a range of Froude numbers. The wedge 
angles obtained from simulations are compared with the values 
calculated from the analytical formulas of Havelock. Furthermore, two 
ship-like slender pressure fields, representing a moving catamaran, are 
employed to visualize the interaction of the waves generated. 
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INTRODUCTION 
 
The first depth-integrated nonlinear wave model that included the 
weakly dispersive effects as a non-hydrostatic pressure was derived by 
Boussinesq (1871) for constant water depth. Much later, Mei and 
LeMeháute (1966), and afterwards Peregrine (1967) derived 
Boussinesq equations for variable depth. While Mei and LeMeháute 
used the velocity at the bottom as the dependent variable, Peregrine 
used the depth-averaged velocity. Due to wide popularity of the 
equations derived by Peregrine, these equations are often referred to as 
the standard Boussinesq equations for variable depth in the coastal 
engineering community. To obtain a set of equations with better 
dispersion characteristics Madsen et. al (1991) and Madsen and 
Sørensen (1992) added higher-order terms with adjustable coefficients 
into the standard Boussinesq equations for constant and variable water 
depth, respectively. Beji and Nadaoka (1996) gave an alternative 
derivation of Madsen et. al’s (1991) improved Boussinesq equations. 
Liu & Wu (2004) presented a model with specific applications to ship 
waves generated by a moving pressure distribution in a rectangular and 
trapezoidal channel by using boundary integral method. Torsvik (2009) 
made a numerical investigation on waves generated by a pressure 
disturbance moving at constant speed in a channel with a variable 
cross-channel depth profile by using Lynett et. al (2002) and Liu & Wu 
(2004)’s COULWAVE long wave model. All these works use the same  
type of cosine function to represent the moving surface object. In this 
study, besides a relatively simple hemispherical shape, a paraboloid-
like function is used to model a moving catamaran type vessel. 
 

BOUSSINESQ EQUATIONS WITH IMPROVED 
DISPERSION CHARACTERISTICS 
 
In this work, Boussinesq equations as derived by Beji and Nadaoka 
(1996) are used with the addition of a pressure gradient to the 
momentum equation 
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where β is a scalar set to β=1/5 according to the second order Padé 
expansion of the linear theory dispersion relation. Note that β = 0 
corresponds to Peregrine’s original equations. When β = 1/5 the model 
may propagate relatively shorter waves (h/λ = 1) with acceptable errors 
in celerity where λ denotes wave length and h is the water depth. 
 
NUMERICAL ALGORITM 
Discretization of Governing Equations 

The governing equations given by Equations (1) and (2) are discretized 
on an Arakawa staggered C-grid system as shown in Figure 1. 
 

 
Figure 1: Location of dependent in Arakawa staggered C-grid system. 
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In the discretization process the continuity equation is substituted into 
the momentum equation in a way first used by O’Brien and Hurlburt 
(1972) for the solution of two-layer shallow water equations. Such an 
arrangement enables running the numerical scheme in the long wave 
mode besides the classical and improved Boussinesq modes. The 
continuity equation is then discretized as 
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where i and j denotes the spatial time steps in the x - and y- directions 
while k indicates the time level. Multiplying both sides by Δt and 
differentiating with respect to x gives 
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Likewise, multiplying equation (3) by Δt and differentiating with 
respect to y gives 
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Equations (4) and (5) are to be used in the discretized forms of the x – 
and y-components of the momentum equation, respectively. The x-
component of the momentum equation is discretized as 
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where the terms given in undiscretized form are to be discretized 
according to the Arakawa C-grid system at time level k + 1/2. 
Substituting (  

  
)   
    as given in Equation (4) into the above equation, 

multiplying by Δt and rearranging gives 
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The y-momentum equation is obtained in exactly the same manner and 
therefore is not repeated here. 
 
The numerical solution proceeds as follows. First, the provisional  
values are computed from the continuity Equation (3) using the old 
time velocity values. The x- and y-momentum equations result in a tri-
diagonal matrix system for the velocities u and v at the new time level. 
For the x -sweep, the new time level values uk+1s are the only 
unknowns and are solved by Thomas Algorithm. Similarly for the y-
sweep, the vk+1s are the only unknowns to be solved. Finally the 
continuity equation is used again to obtain the corrected values of η 
using the last computed uk+1 and vk+1 values. At each time step the 
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procedure is iterated thrice, which is found to be sufficient for reliable 
results. For a better approach the successive values of the variables may 
be compared according to a convergence criterium. Nevertheless the 
numerical experiments show that the additional computational load is 
unnecessary as no appreciable improvement in the results is seen with 
increased iterations. 
 
Boundary Conditions 
All the boundaries surrounding the computational domain are specified 
as the radiation type boundary, across which the waves leave the 
domain without any reflection. For waves moving in a single direction 
Sommerfeld radiation condition reads for u and v respectively, 
 
                                                                                                          ( ) 
          
  
where cx and cy denote the x - and y-components of the phase celerity c. 
Numerical determination of cx and cy at every time step is not quite 
reliable therefore c is used in both cases, as is usually done. Higher-
order boundary conditions as given by Enquist and Majda (1977) may 
also be used; however, the simpler Sommerfeld radiation condition is 
found to be acceptable. 
 
2-D NUMERICAL SOLUTIONS 
2-D simulations of waves (actually 3-D) generated by moving pressure 
fields are performed. First a 3-D hemispherical pressure field is used 
and the wedge angles computed from the numerical simulations for 
various depth Froude numbers are compared with the calculations from 
Havelock’s theoretical formulas. Furthermore, two slender-body type 
pressure fields are used to show the interaction of the waves generated 
by a catamaran-like moving vessel. 
 
Hemispherical Pressure Forcing 
A hemispherical pressure field of the form 
 
 (   )    √ 

                                                                              ( ) 
 
is used for the first simulation. Here p0 is the peak value of the pressure 
distribution and R is the radius of the hemisphere. Figure 2 shows the 
hemispherical field. In the simulation R is taken as 40 m, p0 = 300 Pa 
 

  
Figure 2: 3-D plot of the hemispherical pressure distribution. 
 
and the water depth h = 10 m which gives c =√gh = 10 m/s. The 
simulation region is 2400 m × 1200 m with △x = △y = 4 m. Time step 
is taken as Δt = 0.2 s. In the x-momentum equation px = −xp0=(R2 −x2 

−y2)1/2 and in the y-momentum py = −yp0/(R
2 −x2 −y2)1/2. 

 
Figure 3 shows the contour plots of the simulated wave field at t =10 s, 
20 s and 48 s for the depth-based Froude number Fr = v/c = v/√gh 

=1.1, which corresponds the pressure field speed v = 1.1√gh = 1.1c = 

11 m/s. It is to be noted that the wedge angle 65° measured from the 
simulated wave field at t = 90 s is an acceptable approximation to the 
theoretical value  of Havelock (1908) as can be seen in Table 1 and 
Figure 4. 

 

 
(a) t= 10 s, Fr=1.1 

 

 
(b) t= 44 s, Fr=1.1 

 

 
(c)t= 90 s, Fr=1.1 

 
Figure 3: Wave contours of a moving hemisphere at different time 
steps using Boussinesq model with β = 1/5 for Fr = 1.1 

 
Havelock (1908) investigated the wave patterns for subcritical and 
supercritical Froude numbers due to a moving surface pressure. For the 
wedge angle of a point impulse moving on water of finite depth 
Havelock gives 
 
        √ (   ) (   )    if      Fr ≤ 1   
        √                                 if      Fr > 1 
    
where p = gh/v2 = c2/v2 = 1/Fr2. For a given Froude number or p in 
the subcritical range, first kh is solved by iteration from the relationship 
m(3 − n) = 2/p where m = tanh kh/kh and n = 2kh/sinh 2kh. Then, 
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using the computed kh the numerical value of n is obtained to compute 
α. For the supercritical range is a function of p alone therefore no 
additional computation is needed. The tabular form of the numerically 
and analytically computed wedge angles for the Froude numbers 
considered are given in Table 1. It should be mentioned that some 
limited number of numerical values given by Havelock does not 
exactly match with their counterparts in Table 1, as the present table is 
compiled by high-accuracy computations. 
 
Table 1: Comparisons of numerically obtained wedge angles with 
Havelock’s analytical results for a range of depth-based Froude 
numbers. 
 

Wedge Angle 

Fr 
Boussinesq 

(Numerical) 

Havelock 

(Analytical) 

Relative Error  

Percentage (%) 

0.63 18.00 19.69 8.58 

0.70 20.00 20.26 1.29 

0.75 21.00 21.10 0.47 

0.86 25.00 25.36 1.43 

0.90 25.00 28.50 12.28 

0.96 40.00 37.78 5.86 

0.97 40.00 40.69 1.69 

0.98 39.00 44.66 12.68 

0.99 48.00 51.01 5.90 

1.01 82.00 81.93 0.08 

1.05 72.00 72.25 0.34 

1.10 65.00 65.38 0.58 

1.20 54.00 56.44 4.33 

1.30 47.00 50.28 6.53 

1.40 43.00 45.58 5.67 

1.50 42.00 41.81 0.45 

1.60 36.00 36.03 0.09 

1.80 33.00 33.75 2.22 

2.00 30.00 30.00 0.00 

 
It is to be noted that in the subcritical range as Froude number 
approaches zero the relative depth kh becomes larger. On the other 
hand, in the entire supercritical range kh assumes the limiting case of 
zero and disappears from the wedge angle computations. Thus, in a 
sense, low Froude numbers represent relatively deep waters while high 
Froude numbers correspond to very shallow waters. For Fr = 0 
Kelvin’s well-known result of a deep-water wedge angle  
α  = 19o28′ is obtained as may be seen in Figure 4 where the wedge 
angles computed from Havelock’s analytical formulas and measured 

from the graphs of the numerical solutions of the present Boussinesq 
model are shown. It must be noted that since the Froude number 
mentioned here is depth based (     √  ), Fr = 0 corresponds to 
the deep water case where h is theoretically infinite while    . 
Therefore, it is possible to say that in Figure 4, Fr<1 represents the 
deep water zone and Fr>1 the shallow water zone. Since the 
Boussinesq equations in general are applicable to intermediate and 
shallow water waves, in this work the subcritical range for the 

simulations is selected between Fr=0.63 and Fr=0.99 as shown in 
Table 1. 
 

 
Figure 4: Comparison of numerically obtained wedge angles with 
Havelock’s theoretical formulas 
 
Finally, perspective views of two slender-body shaped pressure fields 
representing a moving catamaran-like vessel are given in Figure 5 for 
Fr = 0.97 at t=9 s and t=18 s respectively.  
 

 
(a) t = 9 s for Fr = 0.97 

 

 
                  (b) t = 18 s for Fr = 0.97 
 

Figure 5: Perspective views of two slender body shaped pressure fields 
representing a moving catamaran type vessel 
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CONCLUSIONS 

 
Boussinesq equations are usually employed for modeling nearshore 
waves or waves in intermediate water depths. Besides these 
applications, the Boussinesq equations may also be employed to model 
wave generation and propagation by moving surface disturbances. The 
surface disturbance may come from a moving free surface object which 
is associated with a moving surface vessel. By adding a moving surface 
pressure into Boussinesq equations, the wave patterns for different 
depth based Froude numbers are investigated for a hemispherical type 
pressure field. The computed wedge angles are compared with 
calculations from Havelock (1908)’s analytical results. Comparisons 

reveal good agreement with the theory, especially for supercritical 
Froude numbers, Fr ≥ 1, where the relative depth is small. In the 
subcritical range, Fr ≤ 1, the average error percentage between the 
computed and the theoretical values is around 5.58 %, considerably 
greater than those of the supercritical range, which is on the average 
2.03 %. The reason for this asymmetry in average error percentages 
between sub- and supercritical Froude numbers is probably due to the 
depth limited character of the Boussinesq equations. As indicated 
before, the subcritical range indicates relatively greater depths with 
completely deep water for zero Froude number. Therefore, the 
relatively poor performance of the numerical model in the subcritical 
range may be attributed to the deep water characteristics of the waves 
generated. Finally, two slender body shaped pressure fields are used for 
visual demonstration purpose of waves due to a catamaran-like surface 
object.  
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