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A NONLINEAR DISPERSIVE WAVE MODEL FOR
WAVE PROPAGATION IN IRREGULAR DOMAINS

Serdar BEJI' and Baris BARLAS'

ABSTRACT

A recently introduced wave model (Nadaoka et. al., 1997) is re-expressed in boundary fitted non-
orthogonal curvilinear co-ordinate system for simulating wave motions in domains with irregular boundaries.
The co-ordinate transformation converts an irregular physical domain into a rectangular computational
domain. The boundary conditions for irregular vertical enclosures surrounding a typical physical domain, such
as a channel, port or harbour, are satisfied accurately. Comparisons of computational results with experimental
measurements and various cases for simulating waves inside harbours and channels show good agreement and
establish confidence for practical applications of the model developed.

1. MATHEMATICAL FORMULATION

The wave model adopted in this work is the
single-component form of the fully-dispersive
weakly-nonlinear wave equations of Nadaoka et.al.
(1997)., The wave model is valid for arbitrary
depths, ranging from infinitely deep to very shallow
waters. The model is thus capable of simulating the
second-order Stokes waves and cnoidal waves
equally well. The continuity and momentum
equations of the wave model are given as
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where U is the horizontal velocity vector and w the
vertical component of velocity both at z=0. { is the
free surface elevation, h the local water depth as
measured from the still water level, and V the
horizontal gradient operator with (d/dk,d/dy)
components. C,, C,, and k denote respectively the
phase and group velocities and wave number,
computed according to the linear theory for a
prescribed dominant frequency @ and a given local
depth A.

1.1. Transformed Wave Equations

The boundary fitted curvilinear co-ordinate
system (&), sketched in Figure 1, is now
introduced. Here, & is taken usually (not
necessarily) in the direction of wave propagation
while 1 is taken perpendicular to the & lines.

The wave cquations are transformed from the
physical space (x, y) to the computational space
(1) by the following co-ordinate transformation
relations (Hoffman and Chiang, 1995):
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The continuity (1) and momentum equations
(2) are re-expressed in curvilinear non-orthogonal
co-ordinates using the above transformations.
However, the Cartesian velocity components are
not transformed hence the components of the
momentum equation are still in  Cartesian
directions. This results in a formulation with less
metric coefficients in the transformed equations,
which read
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for x- and y- momentum equations, respectively.
Here, u, v are the velocity components at the still
water level in the Cartesian coordinates. P, Q, R,
C,CX, CY, RHy, and RHy are defined as
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Figure 1. A sketch representing co-ordinate transformation from the physical domain to the computational domain.
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E,, &y, ... appearing in equations (3)-(8) are the grid
metrics, and S is given by

S;g>c+§%\’:—r—%(uz+vz+wi) (9

2. NUMERICAL APPROACH

The transformed continuity and momentum
equations (4-5-6) are discretized by finite difference
approximations using non-staggered grids, where
the free surface displacement, the velocity

components, and the grid metrics are defined at the
grid intersections. The second-order  central-
difference formulae are used for approximating all
the partial derivatives both in time and space. The
basic algorithm is divided into two stages: In the
first stage, the velocity components are computed
by solving the momentum equations (5-6) until a
specific convergence criterion is met. The solution
of the velocity components requires the use of
Thomas algorithm, which is quite efficient in the
solution of tridiagonal matrix systems. Then, using
the final velocity components, the free surface
elevation is obtained from the continuity equation
(4) at each time step.

The boundary conditions on the free surface
and on the bottom are automatically satisfied by the
wave equations. It then remains (o specify the
conditions on the incident and outgoing boundary
and on the vertical enclosures surrounding the
domain. The conditions at the incoming boundary
are casily specified by introducing an incident wave
field; likewise, the wall condition, which states that
the velocity normal to the wall surface must vanish,
is satisfied easily in the transformed rectangular
computational domain. The radiation condition
usually presents difficulties since there is no perfect
radiation condition for nonlinear directional waves
leaving the domain. Here, the second-order
radiation condition of Engquist and Majda (1977) is
used to minimise the artificially reflected waves
from the outgoing boundary.

2.1. Wave Propagation Over a Topographical
Lens

A sample computation using the above
scheme for the case of wave propagation over a
topographical lens (Whalin, 1972) is performed.
The bathymetry is given by

0.4572:0<x<10.7-G
0.4572+(10.7 - G — x)/25;

h(x.y) = ( s (10)
1067-G<x<183-G

0.1524:183-G<x <21.3
where
G(y) = [y(6.096— y)]* for 0<y<6.096

Figure 2 shows the bathymetry according to these
definitions.
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Figure 5. Channel geometry used for simulating waves in a widening channel.

Figure 6. Time domain simulation of the wave field in a diverging channel

3. Concluding Remarks

The recently developed nonlinear wave model
of Nadaoka er. al. (1997) has been re-expressed in
the boundary fitted curvilinear co-ordinate system
to achieve accurale trcatment of the boundary
conditions for irregular physical domains. The
numerical scheme based on the transformed wave
equations is first used for a sample simulation of
nonlinear wave propagation over a topographical

lens and the results are found to be quite acceptable.
Furthermore, time domain simulations of sinusoidal
regular waves entering a marina are given 0
illustrate  typical diffraction patterns. Finally,
numerical simulation of wave propagation in a
diverging channel is presented. Thus, it may be
conclided that the model introduced here shows
promising aspects for future practical applications,
especially in the simulations of waves in domains
with arbitrary boundaries.
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