
BOUNDARY-FITTED NONLINEAR-DISPERSIVE WAVE MODEL
FOR APPLICATIONS IN GEOMETRICALLY COMPLICATED REGIONS
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A nonlinear dispersive wave model in boundary-fitted coordinates is introduced for practical
applications involving complicated lateral geometries. The model is formulated in terms of the
contravariant velocity components so that the wall condition on irregular lateral boundaries
is satisfied easily and accurately. Test cases involving converging, diverging, and circular
channels are considered to check the reliability of the model predictions. Finally, nonlinear
wave transformations in an arbitrarily shaped region are simulated as an example to practical
applications.
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1. Introduction

Practical applications in coastal engineering usually demand the solutions of the governing equa-
tions in geometrically complicated regions. Therefore, a circulation or a wave model expressed in
boundary-fitted coordinates is much preferable. Earlier attempts were directed to transformation
of the governing equations alone, keeping the cartesian velocity components unchanged as depen-
dent variables. Later, it was recognized that transforming both the governing equations and the
velocity components would be much better for accuracy and numerical stability (see Muin and
Spaulding, 1996). In this work, one-component form of the nonlinear dispersive wave equations of
Nadaoka et al. (1997) in boundary-fitted coordinates is introduced. The transformed equations are
expressed in terms of the contravariant velocity components which render the specification of the
lateral boundary conditions as simple as possible.

Several benchmark tests are considered for checking the reliability of the transformed equations
and the numerical code. First, linear long wave propagation along a channel of gradually varying
cross section is simulated to compare the amplitude variations against Green’s analytical formula.
Wave simulations in a circular channel are considered next to compare the numerically obtained
solutions with the analytical solutions. The results for all the test cases indicate almost perfect agree-
ment between the analytical and the numerical solutions. Finally, a hypothetical case of nonlinear
wave propagation in an arbitrary domain is simulated as an example for practical applications.
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2. Wave Equations in Boundary-Fitted Coordinates

One-component form of the wave model of Nadaoka et al. (1997) in cartesian coordinates can be
found in that particular work and are not repeated here. Using the well-known relations (see for
example Hoffman and Chiang, 1995) and combining appropriate equations, the transformed forms
of these equations in curvilinear coordinates (ξ, η, τ) become (Beji and Barlas, 2003)
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ξ∗η∗ = ξxηx + ξyηy, C∗ = C4
p(1− r)J.

where ζ is free surface elevation, U∗ = U/J and V ∗ = V/J with U and V being the contravariant
components of the horizontal velocity vector at z = 0. J is the Jacobian and ξx, ξy, ηx, ηy are the
metrics of the transformation. r = Cg/Cp with Cp and Cg denoting respectively the phase and
group velocities computed according to linear theory for a specified wave frequency ω and a given
local depth h.

3. Numerical Approach and Boundary Conditions

Since the transformed computational domain is perfectly rectangular, the numerical solutions of
equations (1-4) may be accomplished quite conveniently using finite-difference approximations. Fig-
ure 1 shows a sketch of an arbitrarily shaped physical domain and the corresponding computational
domain.
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Figure 1. Definition sketch of the physical domain (left) and the corresponding
computational domain (right). The hatched lines indicate wall boundaries.



After trying three different grid orientations (non-staggered grid, staggered Arakawa B-grid, and
C-grid) it has been decided that staggered Arakawa C-grid performed best for the equations used
here (Kantha and Clayson, 2000). Figure 2 shows the grid orientation for the variables.
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Figure 2. Grid orientation (staggered Arakawa C-grid) for the variables ζ, U∗, and V ∗.

Two time levels are used and all the derivatives are centered at the mid-time level t + ∆t/2, t
being the current time and ∆t the time step. The main wave propagation direction is taken along
the positive ξ−axis; therefore, ξ−momentum equation is solved first to obtain U∗ for the new time
level t + ∆t, assuming the new time level values of ζ and V ∗ known. Then, η−momentum equation
is solved for V ∗ using U∗ as computed from the previous step. Finally, the surface displacement
is obtained from an explicit discretization of the continuity equation. Since all these computations
involve certain approximations, an iterative procedure is adopted. Through numerical experiments it
has been ascertained that for all the cases considered in this work, a maximum of five iterations were
sufficient to obtain reliable results. This was determined by checking the values of the normalized
surface elevation at selected locations between successive iterations until the difference between two
consecutive iterations became less 10−4.

Since the wave model is formulated in terms of the contravariant velocities, even for irregular
geometries the wall condition can be specified in a quite straightforward manner by simply requiring
the contravariant velocity component normal to the wall boundary vanish.

The radiation condition for outgoing waves usually requires particular attention due to undesir-
able reflection effects which contaminate the solution within the domain. The classical radiation
condition for unidirectional waves is given by Sommerfeld’s equation, which implies right or left
going unidirectional waves of constant celerity. For the directional waves higher-order boundary
conditions of Engquist and Majda (1977) may be used for better absorption of complicated wave
patterns. However, even for directional waves, Sommerfeld’s radiation condition in boundary-fitted
coordinates is found to give quite acceptable results, while having relatively simpler expression.
Sommerfeld’s equations in curvilinear coordinates in the ξ− and η−directions are
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If the physical domain is rectangular, ξx = 1, ξy = 0, ηx = 0, and ηy = 1, the above equations
reduce to ut ± Cux = 0 and vt ± Cvy = 0, respectively. In this work the outgoing boundary is
located at the end of the ξ−direction hence equation (5) with + sign (right going waves) is used.



4. Sample Computations

Computations involving non-rectangular lateral boundaries are presented now to demonstrate both
the versatility of the equations derived and the accuracy of the numerical code. Wave simulations
in gradually converging, diverging, and circular channels are performed for comparisons with the
corresponding analytical results while a hypothetical case showing nonlinear wave propagation across
a region enclosed by bending lateral walls is presented as an example to practical applications.

4.1 Gradually Varying Channels

Linear long wave propagation along a gradually converging channel is simulated first and the magni-
fication of the wave amplitude is compared with the theoretical formula of Green. The period of the
incident wave is T = 8 s and the water depth h = 1 m, resulting in a wavelength of approximately
L = 25 m. The channel width reduces to half its initial value after a distance of 10 wavelengths.
For a constant water depth Green’s formula predicts an amplitude magnification according to

a(x) = a0

√
b0/b(x) (7)

where x is the distance along the channel, a0 is the initial wave amplitude and b0 is the channel width
at x = 0. a(x) and b(x) stand respectively for the amplitude and the channel width at an arbitrary
location x along the channel (see Lamb, 1932, §185). Alternatively, equation (7) may be obtained
from the principle of constancy of the energy flux across the channel. Figure 3a shows a perspective
view of the fully-developed wave field while figure 3b compares the numerically computed wave form
in mid-section with equation (7).
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Figures 3a, b. Long wave propagation across a gradually converging channel: perspective view,
and magnification of the simulated wave compared with the analytical expression.

The next case is a gradually diverging channel with incident wave and water depth conditions
identical to the above case. The channel width doubles its initial value after 10 wavelengths and
equation (7) is valid as given above. Figure 4a shows the perspective view and figure 4b compares
the computed and theoretical values as in figures 3a, b.
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Figures 4a, b. Long wave propagation across a gradually diverging channel: perspective view,
and attenuation of the simulated wave compared with the analytical expression.



From the figures 3b and 4b it is obvious that for both cases the numerically simulated amplitude
magnification and attenuation agree almost perfectly with the corresponding analytical solutions.

4.2 Circular Channel

Equations (1-4) are now used for the simulation of waves in a circular channel. Since the analytical
solution is available only for linear waves the simulations are performed for the linearized versions
of the equations. In the context of acoustics, Rostafinski (1976) studied the sound propagation in
a curved duct. The analytical solution, which may be readily adapted to the present problem, may
be summarized as follows. In polar coordinates, r =

√
x2 + y2 and θ = arctan y/x, the surface

elevation is expressed as a linear combination of different modes, which are given in terms of the
Bessel functions of the first and second kind:
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where νn’s (n = 1, · · · , N) are to be determined from equation (11) below. The boundary conditions
on the inner wall and outer wall dictate ∂ζ/∂r = 0 so that
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in which the primes denote differentiation with respect to r. Eliminating an and bn from the above
equations give the condition for determining νn’s:
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Imposing the incident wave amplitude as ζ(r, 0, t) = 1 at the channel entrance θ = 0, noting that
each component function is orthogonal with weight 1/r, the coefficients an and bn are obtained as
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(kri)Jνn(kr)− J ′νn
(kri)Yνn(kr) is obtained from the use of (9) in (8). Also, note

that an and bn are related through the boundary condition (9).
For the test case considered here the inner radius of the channel is taken as ri = 100 m and the

outer radius as ro = 200 m; the channel covers an arc of 180o. The water depth and the incident
wave period are selected as h = 10 m and T = 5 s, respectively. These parameters result in a
wavelength of L = 36.6 m and wavenumber k = 0.17 rd/m.

Using equation (8) the analytical solution is established from the superposition of N = 6 different
modes which are determined as νn = 9.7, 16.0, 18.9, 22.1, 26.1, 31.8 from equation (11) for ri = 100
m, ro = 200 m, and k = 0.17 rd/m.

In numerical simulations, sinusoidal waves with a uniform amplitude are imposed across the
channel at the entrance while equation (5) is used as the radiation condition at the end of the
computational domain. In physical domain, a constant angular grid spacing of ∆θ = π/360 rd is
used along the channel while the grid spacing in the radial direction is ∆r = 1 m. Time resolu-
tion is taken as ∆t = T/50. No sponge layer was used at the outgoing boundary; however, the
computational domain was 20% longer than shown to avoid the contaminating effects of reflected
waves.



As the waves propagate in the circular channel, they reflect from the outer wall and diffract in
the vicinity of the inner wall thus creating quite complicated patterns as depicted in the perspective
views and contour plots given in figures 5a-d.

5a 5c
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Figure 5a-d. Perspective views and contour plots of wave propagation in a circular channel at
t = 10T (left) and t = 20T (right) as obtained from the numerical solution of the present model.

In order to make quantitative comparisons with the theory, the analytical solution is compared
in figure 6 with the fully-developed wave field as obtained from the numerical solution after 40
wave periods elapsed. The two solutions appear identical, which establish confidence in the model
equations and the numerical code.

Figure 6. Fully-developed wave field in a circular channel: analytical solution (left)
and numerical solution (right).

Finally, comparisons of the surface displacement along the inner wall and the outer wall between
the analytical solution and numerical solution are presented in figures 7 and 8.
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Figure 7. Comparison of the analytical solution (solid line) with the numerical solution
(dashed line) for the surface displacement along the inner wall.
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Figure 8. Comparison of the analytical solution (solid line) with the numerical solution
(dashed line) for the surface displacement along the outer wall.

As the above figures reveal, except for slight phase differences, the agreement with the theory is
excellent even for such a complicated case involving reflection and diffraction patterns. Thus, the
test provides a definite conclusion regarding the reliability of the model introduced.

4.3 A Hypothetical Case

The last simulation is a hypothetical case showing nonlinear wave propagation across a region
enclosed by bending lateral walls which cause diffraction (left wall, bending out) and reflection
(right wall, bending in) of waves. The incident waves are Stokes type waves with period T = 4 s,
height H = 0.7 m and steepness kH = 0.2; the water depth is constant h = 5 m. Figures 9a and
9b, depicted at two different instances, show that qualitative aspects of the wave deformations are
well simulated and the nonlinearity of the wave field does not create any numerical problems.

Figure 9a and 9b. Nonlinear wave propagation across a region of non-uniform cross section.



5. Concluding Remarks

A nonlinear dispersive wave model valid for arbitrary water depths is given in the boundary-fitted
curvilinear coordinate system and the numerical code of these equations is developed. The compar-
isons for the test cases of gradually diverging, converging, and circular channels provide convincing
evidence regarding the reliability and accuracy of the model equations and the numerical approach.
A hypothetical case simulation involving nonlinear wave amplitudes and arbitrary lateral bound-
aries serves as an example to the possible practical applications of the model. Inclusion of the
wave breaking effect, albeit in a semi-empirical manner, would be quite desirable especially in the
simulations involving nearshore regions with man-made structures.
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