NEW APPROACHES FOR COMPUTING WAVE GROWTH RATE
DUE TO WIND INDUCED SHEAR INSTABILITIES

S. Beji! and K. Nadaoka?

New approaches for computing the wave growth rate due to wind induced shear instabilities
are presented. The first approach is based on an analytical solution of Rayleigh’s equation for
arbitrary wind profiles in the vicinity of the critical point, followed by numerical integration.
The wave growth rate is obtained from the dispersion relation of the air-sea interface. The
results of the first approach agree perfectly well with the numerical solution of Conte and
Miles (1959) for the special case of a logarithmic wind profile. The second approach assumes
a definite vertical profile for the perturbed velocity field and then makes use of the air-
sea dispersion relation for computing the wave growth rate. Despite the simplicity of the
approximation the agreement of the second approach with the first one is quite acceptable.
Comments on the future work are given in closing.
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1. Introduction

In studying the instability of sensitive jets Rayleigh (1880) suggested an improvement in the theory
by supposing a gradual change in velocity and thus proceeded to derive an equation which is known
today as the Rayleigh equation. Miles (1957) proposed a model for the growth of wind waves on
the basis of Rayleigh’s equation. Later, Conte and Miles (1959) gave accurate computations of
wave growth rates by numerical solution of Rayleigh’s equation for a logarithmic wind profile. This
work first considers a different approach of solving the Rayleigh equation for arbitrary mean wind
profiles by implementing the ideas of Rayleigh, which render the equation analytically solvable in
the immediate vicinity of the singular point hence providing the initial values for the numerical
integration. Furthermore, the wave growth rate is obtained from the dispersion relation of the
air-water interface, which involves the vertical integration of the disturbed vertical velocity. The
growth rates obtained are then compared with those of Conte and Miles (1959) and found to be in
excellent agreement. As a second approach, a definite vertical profile is assumed for the velocity field
and then the wave growth rate is computed from the dispersion relation again. Acceptable results
are obtained although not as good as the first approach. In closing, comments on the development
of a vertically integrated model of coupled air-water system are made.
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2. Rayleigh Equation and Its Approximate Solution

In two dimensions the governing equations of linearized perturbed shear flow with a prescribed
mean wind velocity U(z) are given by

u+ U2y +U'(2)w = —ps/pas (1)
wy +U(2)we = —pz/pa — 9, (2)
Uy +w, = 0, (3)

where u and w are horizontal and vertical velocity components respectively, p is the pressure, p,
is the air density, and g is the gravitational acceleration. Subscripts indicate partial differentiation
with respect to the indicated variable and prime indicates differentiation with respect to z.
Assuming the horizontal motion periodic in time and space the disturbed vertical velocity com-
ponent is taken as
w(z, z,t) = W(z)expik(x — ct) (4)

where k is the wavenumber, ¢ is the wave celerity, and W (z) is a function of the vertical coordinate
z only. From the continuity equation,

uw(z,z,t) = (i/k)W'(2) expik(z — ct). (5)

Eliminating pressure by cross differentiating (1) and (2) and making use of (4) and (5) result in
the Rayleigh equation in terms of W (z):

[U(z) = c] (W' = E*W) = U"(2)W = 0. (6)

The above equation is obviously singular at the critical height z = z. where U(z.) = ¢. At present
no analytical solution of the Rayleigh equation exists; therefore, it is the usual approach to resort
to a combination of analytical and numerical methods (see Miles, 1957 and Conte and Miles, 1959).
Here, based on Rayleigh’s (1895) ideas, an unconventional approach is adopted for obtaining an
approximate analytical solution of equation (6) around the singular point z. for an arbitrary wind
profile U(z). Accordingly, in the vicinity of z, the mean wind profile U(z) and its second derivative
U"(z) are approximated as

U(z) = U'(ze) (2 — %) + ¢, U"(2) = U"(2c). (7)

Using these approximations in equation (6) results in the following differential equation which is
valid expressly in the close neighborhood of z.:

1 U'(z) 1
w” —kQ[ } W=0 8
E U7 (=) ®)
in which Z = —U"(z.)(z — z.)/U’(2¢). Near the critical point Z approaches zero hence 1/Z becomes

large in comparison with [kU’(z.)/U" (z.)]? and equation (8) may be further approximated as
1
W'+ W =0 9)

which is a Riccati equation. First changing the dependent variable W = /2 and then changing
the independent variable ¢ = 2v/% transform equation (9) to

EWee + Ve + (€ —1)¥ =0, (10)



which is a Bessel equation of order one. The two linearly independent solutions of equation (10)
are given in terms of the Bessel functions of the order one:

¥(§) = AL (§) + BY1(§), (11)

where A and B are arbitrary constants. Changing to the original variables gives
W) =V [An(2VE) + BYi(2V3)] . (12)

in which 2 = —U"(z.)(z — 2.)/U'(z.) as defined before. Note that for negative values of Z the
argument of the Bessel functions is pure imaginary.

The above solution, which is valid around the singularity, provides the initial values for the
numerical integration of equation (6). The details of the numerical procedure may be described
as follows. First, a small quantitity, say ¢ ~ 1073 — 1076, is selected and just below the
critical point z._ = 2.(1 — ¢) is defined. Then, vZJ;(2v2) and [VZJ1(2VZ)] evaluated at
Ze. = =U"(2.)(2e_ — 2¢) /U’ (z) supply the starting values for the first linearly independent solution
while v/ZY7(2v/2) and [v/ZY1(2VZ)]’ for the second solution. For the present problem 2. < 0, there-
fore care must be observed in using the complex conjugate values of v/2Y1(2v/Z) and [VZY1(2V2)])
at Z._ for ensuring a positive growth rate since these terms implicity contain the logarithmic singu-
larity. Having prescribed the necessary starting values, equation (6) is numerically integrated in the
negative direction (below the critical point) for each set of initial conditions between z. and zy,
which is termed the roughness length of the air-water interface. The values of linearly independent
solutions at the lower limit zg, as obtained from two parallel numerical integrations, are denoted by
W, (20) and Wy, (20), which are kept in memory for later use in satisfying the boundary conditions.
The second part of the numerical integration proceeds in the positive direction (above the critical
point) between z., = z.(1 + ¢) and 2z, which is a relatively large and indefinite upper limit to be
determined according to a convergence criterium. The starting values are again provided from the
analytical solution as described above but this time evaluated at zZ., = —U"(2c)(2e, — 2¢)/U’(2¢)-
At every integration step in the positive direction the boundary conditions are used to determine
the unknown coefficients, say A and B again, of the desired solution. If the difference in one of the
coefficients between two successive steps is less than a specified small value the computation is ter-
minated and the computed values of the linearly independent solutions are denoted by Wy, (zo) and
Wy, (200). Trial computations show that instead of applying a convergence criterium with an unfixed
upper limit of integration it is more convenient and quite sufficient to perform the integration to
the fixed height of A = 27 /k.

The boundary conditions imposed are typical to these kind of problems. Just above the interface
at z = zp, a definite value for the vertical velocity is enforced. For great heights, z = z,, the
disturbances are assumed to vanish. Accordingly,

W(Z()) = W(), AWJl (Zo) + BI/VY1 (Zo) = W(), (13)
W'(200) + kW (200) = 0, AW (200) + kW, (200)] + B [Wy, (200) + Wy, (200)] = 0. (14)

Solving for the unknown coefficients A and B gives

A —[Wy, (200) + Wy, (200)|Wo /Wy, (20) 5 - Wo— AWy (20)]
{W5, (200) + kW, (200) = Wy, (200) + kW (200)IW, (20)/ Wy (20)} Wy, (20)
(15)
which are evaluated at every integration step in the positive z—direction till the specified criterium
is met at the previously unknown height z.,. Note that since the solution is complex the coefficients

A and B are complex too.



3. Dispersion Relation of Air-Sea Interface

Substituting equation (4) into (2), supposing for the air pressure p(x, z,t) = P,(z) expik(z — ct),
and integrating from the air-water interface n = aexpik(x — ct) to +oo give for P,(n)

+o00
Pu(n) = Po — paga + ipak / 06 - AWz, (16)

where Py is the atmospheric pressure at the surface and the lower limit of the integration has been
set to zg instead of n, since the problem is linearized. For later purposes it is necessary to make use
of the kinematic boundary condition at z = 7 for air:

n+U(z)n: =w at z=m. (17)

Similar to equation (16), the above boundary condition is now evaluated at the roughness height
z = z¢ instead of the actual free surface z = 1. Noting that by definition the mean wind velocity
U(z) vanishes at z = zq it is possible to write from equation (17)

—ikca = W(Zo) = W(). (18)
Using (18) in (16) gives
Pala) = P = paga+ paka S22 [*01(z) — w2 (19)

which is the air pressure on the free surface due to the wind.
For the water wave motion it is fairly straightforward to show that for deep water waves the
pressure on the free surface can be expressed as

Pu(n) = Py — pwga + pukca. (20)

The dispersion relation of the combined air-water system can be obtained from the continuity of
pressure across the interface; that is, P,(n) = Py(n):

Py — paga + pal{:CQ(I(];V/C)/ [U(2) — W (2)dz = Py — puwga + pukcia (21)
0 20

Eliminating Py’s, dividing by pya, and solving for ¢? result in
= (g/k) [(1—s)/(1 = sL)], (22)

where s = p,/pw and the complex integral I, is given by

I = (’fy/s) / O+°° U(2) — | W(2)dz. (23)

Noting that s ~ 1072 is a small quantity, equation (22) may be approximated as
c~co[(1—=15/2)/(1 —sl./2)] ~co(1 —s/2+ s1./2), (24)

in which ¢g = v/g/k. Note that both W (z) and ¢ appearing in the integral I, are complex; however,
in evaluating the integral the unknown complex phase speed ¢ may be taken approximately real as
its imaginary part is relatively small. Once W (z) is determined, the complex integral I. hence the
growth rate can be computed as the complex part of kc:

v = kS(c) = (1/2)skcoS(1,), (25)



where $(I.) denotes the imaginary part of the complex integral I.. Miles (1957) defines a slightly
different, non-dimensional growth rate 3, which may be expressed in terms of (1.) as

B = (c/U1)*S(L). (26)

4. Computed Growth Rates and Velocity Profiles

Computations using the above described approach are compared with the results given by Conte
and Miles (1959) for the growth rate 3 in Table 1 with excellent agreement.

Q=3x10"3 Q=1x10"2 Q=2x10"2
co/U; | Present work | Conte-Miles | Present work | Conte-Miles | Present work | Conte-Miles
1 3.533 3.536 3.233 3.237 2.744 2.747
2 3.412 3.414 3.298 3.302 2.925 2.928
3 3.431 3.433 3.205 3.208 2.775 2.779
4 3.428 3.431 2.962 2.966 2.424 2.427
5 3.297 3.301 2.544 2.547 1.907 1.909
6 2971 2.975 1.963 1.965 1.287 1.288
7 2.438 2.441 1.289 1.290 0.677 0.677
8 1.748 1.750 0.647 0.646 0.224 0.223
9 1.015 1.016 0.193 0.193 0.026 0.026
10 0.405 0.405 0.018 0.018 0.00024 0.00024

Table 1: Comparisons of the dimensionless growth rate 3 for three different groups of wind param-
eters Q = gzg/U? = 3 x 1073 (left), Q = 1 x 1072 (middle), and Q = 2 x 10~2 (right).

To give an idea about the nature of the solution, real and imaginary parts of the vertical air velocity
W (z) are shown in Figures la and 1b.
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Figures 1a, b: Real and imaginary parts of the vertical dependency of the perturbed air velocity
W (z) for ¢g/U; =1 and Q = 3 x 1073 (left), Q = 2 x 1072 (right).



5. Approximate Vertical Profiles

While it is essential to have accurate means of computing the growth rates for arbitrary wind
profiles as introduced in the previous section, approximate but more practical methods are needed,
especially for developing vertically integrated and coupled wind-wave models. To this end, we first
re-consider the approximate profile suggested by Miles (1957) for the vertical dependency of the
disturbed velocity field and then introduce an improved version of it.

5.1 Miles’s Approximation

Prior to the accurate numerical computations of Conte and Miles (1959), Miles (1957) made an
attempt of computing the wave growth rates by an approximation. For the vertical dependency of
the stream function Miles (1957) assumed a form, which is equivalent to the following expression of
W (z) for the vertical velocity w(z, z,t) = W(z) exp ik(x — ct):

W (z) = ikalU(z) — e, (27)

which satisfies the kinematic boundary condition, equation (17), at z = zy provided that e%%0 is
negligibly small. Miles (1957) obtained the growth rates by means of approximate evaluation of
a definite integral expression. Here, the vertical profile suggested by Miles, equation (27), is used
in equations (23) and (26) respectively for computing the growth rate (; the integral appearing in
(23) is evaluated numerically. Except for small ¢/U; values, for which Miles’s estimates are lower,
the results are in accord with Miles’s values. However, when compared with the accurate numerical
solution of Conte and Miles (1959), Miles’s approximate method grossly overestimates the rates,
amounting to as much as 6 times the correct value. Table 2 below makes the same comparisons
given in Table 1 but this time between the approximate solution devised from equation (27) and
the numerical solution of Conte and Miles (1959).

Q=3x10"3 Q=1x10"2 Q=2x10"?2
cp/Ur | Miles’s Ap. | Conte-Miles | Miles’s Ap. | Conte-Miles | Miles’s Ap. | Conte-Miles

1 19.60 3.54 10.87 3.24 7.13 2.75
2 22.98 3.41 13.30 3.30 9.02 2.93
3 21.26 3.43 12.02 3.21 7.98 2.78
4 14.66 3.43 9.43 2.97 5.96 2.43
5 13.52 3.30 6.58 2.55 3.83 1.91
6 9.51 2.98 4.02 1.97 2.05 1.29
7 6.02 2.44 2.06 1.29 0.85 0.68
8 3.30 1.75 0.80 0.65 0.23 0.22
9 1.46 1.02 0.20 0.19 0.03 0.03
10 0.45 0.41 0.02 0.02 0.00 0.00

Table 2: Comparisons of the dimensionless growth rate 3 for three different groups of wind param-
eters Q = gzo/U? = 3 x 1073 (left), Q = 1 x 1072 (middle), and = 2 x 1072 (right).

The overestimated growth rates clearly indicate that the functional dependency of W(z) as given
by (27) is improper. Actually, it is possible to show that such a form is more suitable for the real
part of the solution of the Rayleigh equation. Since the imaginary solution determines the growth
rate, a modified form of (27) is suggested in the following.



5.2 An Improved Approximation

Miles’s approximation serves as a good starting point for selecting a better vertical profile for
the disturbed velocity. After examining the general characteristics of the imaginary solutions as
obtained from the accurate numerical solutions, Miles’s approximate profile is modified as

W (2) = ika[U(z) — ¢|(z0/2)%e kE=%0), (28)

where « is a free parameter to be determined. Note that the above profile satisfies the kinematic
boundary condition at z = zp without any restriction so that W(zp) = —ikca as in (18).

In principle a should be determined from the appropriate governing equation by imposing a defi-
nite technique of minimizing a definite error such as using the least squares technique for minimizing
the integrated error with respect to . However, since c is imaginary, such an approach requires
the simultaneous solutions of the Rayleigh equation for the real and imaginary parts and equation
(23) for c. For the time being we shall not pursue this course and, based on numerical experiments,
propose an empirical expression for « as

o= [e7HIXET _0.00552 [1 4 8.3V — 2.1V (co/Un)| / V3. (29)

For a wide range of ¢y/U; and 2 the parameter « is a positive number less than 0.3. If the above
formula produces an « value less than zero « is set to zero, which means the above model becomes
identical with Miles’s approach. Such a condition occurs only for relatively high cy/U; values for
which Miles’s approach becomes good as well. Table 3 presents the comparisons of the dimensionless
growth rate § between the present approximate method and the numerical solution of Conte and
Miles (1957). The largest error is 6.7% for cg/U; = 6 and = 3 x 1073, Numerical computations
involving much wider €2 values revealed that equations (28) and (29) still give reliable results with
errors not exceeding 7% or so.

Q=3x10" Q=1x10"2 Q=2x10"2
co/U;y | Present Ap. | Conte-Miles | Present Ap. | Conte-Miles | Present Ap. | Conte-Miles
1 3.61 3.54 3.25 3.24 2.72 2.75
2 3.58 3.41 3.44 3.30 3.04 2.93
3 3.46 3.43 3.24 3.21 2.81 2.78
4 3.31 3.43 2.89 2.97 2.38 2.43
5 3.10 3.30 2.42 2.55 1.84 1.91
6 2.78 2.98 1.86 1.97 1.24 1.29
7 2.33 2.44 1.23 1.29 0.66 0.68
8 1.74 1.75 0.64 0.65 0.23 0.22
9 1.08 1.02 0.20 0.19 0.03 0.03
10 0.45 0.41 0.02 0.02 0.00 0.00

Table 3: Comparisons of the dimensionless growth rate 3 for three different groups of wind param-
eters Q0 = gz9/U? = 3 x 1073 (left), Q = 1 x 1072 (middle), and Q = 2 x 1072 (right).

In order to demonstrate the accuracy of the vertical profile selected the present approximation
for W (z) and Miles’s approximation are separately compared with the numerical solution in Figures
2a and 2b, respectively.
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Figures 2a, b: Imaginary part of the vertical dependency of the perturbed air velocity as approxi-
mated by two different profiles compared with the numerical solution for cq/U; = 3 and Q = 1x1072.

Figure 2a further confirms that not only the integral value of the approximated profile but also
the shape of the profile itself agrees with the accurate numerical solution of the Rayleigh equation
and that the improved form proposed by equation (28) is a promising one for modelling the vertical
dependency of the disturbed air velocity due to shear instabilities between the air-sea interface.

6. Concluding Remarks

Two new approaches are introduced for the computation of wave growth rate due to shear instabil-
ities. The first method is based on Rayleigh’s ideas of certain approximations in the vicinity of the
critical point z. where the mean wind velocity is equal to the wave velocity. The method is valid
for arbitrary mean wind profiles and gives very accurate results as demonstrated for the special
case of a logarithmic wind profile as adopted by Miles (1957) and Conte and Miles (1959). The
second approach aims at developing a vertically integrated model for the more general problem of
the coupled wind-wave problem and proposes a vertical distribution function for the disturbed air
velocity. The profile introduced is seen to give quite acceptable results for the wave growth rates
and expected to be set on firmer grounds by determining the free parameter o by an analytical
approach instead of the empirical formula used here. The future work will focus on this particular
problem first and then proceed to develop a vertically-integrated coupled wind-wave model.
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