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Abstract

A weakly-nonlinear and dispersive wave equation recently developed by the authors is used for
formulating a spectral-type unidirectional wave propagation model describing spectral transforma-
tions of narrow-band waves travelling over arbitrary depths. The essential characteristics of the
model equation are recapitulated first and then the spectral domain representation in terms of
spatially varying harmonic amplitudes is presented. The resulting evolution equations are used to
simulate the experiments concerning harmonic generation in shallow water and nonlinear random
wave transformations over a submerged bar. Furthermore, the spectral model predictions are
compared with the field measurements in nearshore with satisfactory results. q 1999 Elsevier
Science B.V. All rights reserved.

Keywords: Spectral model; Nonlinear random waves; Shallow water waves; Deep water waves; Harmonic
generation; Spectral transformations

1. Introduction

Nearshore zone is characterized by highly nonlinear wave motions that manifest
themselves as asymmetric and skewed wave profiles, and ultimately breaking. While
accurate representations of such complicated motions are still beyond the reach of the
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present state-of-the-art, substantial progress has been made over the last two decades in
unravelling various facets of the nonlinear phenomenon.

A penetrating account of the nonlinear shoaling waves was given by Freilich and
Ž .Guza 1984 who proposed two wave models as variants of the Boussinesq equations

and presented the corresponding spectral domain formulations along with comparisons
with the field measurements. The success of the Boussinesq-type equations in simulating
the nonlinear shallow water wave transformations stimulated the attempts to extend their

Žapplicable domain so as to cover large enough areas for practical applications Witting,
1984; Madsen et al., 1991; Madsen and Sørensen, 1992; Nwogu, 1993; Beji and

. Ž .Nadaoka, 1996a . For varying bathymetry Mase and Kirby 1992 proposed a hybrid
model, which was a modified form of the spectral domain representation of the KdV

Ž .equation. Madsen and Sørensen 1993 used their improved Boussinesq equations for
producing spectral models for constant and varying depths and investigated the higher-

Ž .order boundary conditions. Agnon et al. 1993 formulated a weakly-nonlinear, fully-dis-
persive unidirectional spectral model based on the standard equations of potential theory
for surface waves.

In order to overcome the depth restrictions associated with Boussinesq models,
Ž .Nadaoka et al. 1994, 1997 derived a set of fully-dispersive, nonlinear wave equations

modelling the evolution of broad-band directional wave fields over arbitrary depths. The
special forms of these general equations were manipulated further, resulting in two new
wave models describing transformations of narrow-band directional and unidirectional

Ž .nonlinear waves Beji and Nadaoka, 1997a . All these wave equations are formulated in
time domain via a new approach named multi-term coupling technique and therefore

Ž .they differ considerably from the unidirectional spectral model of Agnon et al. 1993 .
The present work employs the unidirectional wave model of Beji and Nadaoka

Ž .1997a which is not restricted to only shallow or only deep waters but is operational in
the entire range of relative depths. In shallow water the equation simulates the conoidal
and solitary waves while in deep water it admits the second-order Stokes waves as
solution. When the incident wave frequency coincides with the prescribed dominant
frequency of the wave model the linear shoaling rate of the incident wave is predicted
exactly, in perfect agreement with the energy flux concept.

The outline of the paper is as follows. In Section 2, the linear dispersion, linear
shoaling, and nonlinear properties of the wave model are examined. In Section 3 the
surface displacement is represented as a Fourier series with spatially varying amplitudes
and phases, and a set of nonlinearly coupled first-order differential equations describing
the spatial variations of each harmonic amplitude is obtained. Section 4 contains the
numerical simulations using the evolution equations derived in Section 3 for the

Ž .experiments of Chapalain et al. 1992 on harmonic generation in shallow water and for
Ž .nonlinear random wave transformations over a submerged bar Beji and Battjes, 1993 .

Ž .Furthermore, the field measurements in nearshore zone Nakamura and Katoh, 1992 ,
covering a distance of nearly 2 km, are compared with the computations with quite
acceptable results. Finally, for extending the applicability of the model to the surf zone,
the possibility of including wave breaking effects in a heuristic manner as a simple

Ž .dissipation term Mase and Kirby, 1992; Battjes et al., 1993; Beji and Nadaoka, 1997b
is pointed out.
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2. General characteristics of wave model

Ž .The wave equation used in this work Beji and Nadaoka, 1997a is

1 C yC C C yCŽ . Ž .p g p p g
C h q C C qC h y h y hŽ .g t p p g x x x t x x x2 22 k 2k

2 41 3 C k Cg p 2q C C q C yC C hq g 3y2 y h s0,Ž .Ž . Ž . Ž .p g p g p x2x x ž /2 4 C gp

1Ž .
where C , C , and k are respectively the phase and group velocities and the wave-num-p g

ber computed according to the linear theory dispersion relation for a dominant wave
frequency v and a given local depth h, the subscripts x and t indicate partial
differentiation with respect to space and time, respectively.

Ž .'For very shallow water waves C sC s gh and Eq. 1 reduces to the combinedp g

unidirectional form of Airy’s nonlinear non-dispersive equations. If the lowest-order
2 2 2 2Ž . Ž .' 'dispersion is retained by letting C s gh 1yk h r6 and C s gh 1yk h r2p g

Ž .then a straightforward manipulation of Eq. 1 leads to the KdV equation. Furthermore,
for infinitely deep water waves the model equation admits the second-order Stokes

Ž .waves as solution. Thus, Eq. 1 may be interpreted as a unified nonlinear wave model
describing evolution of a narrow-band wave field from infinitely deep to very shallow
waters with smooth transition.

2.1. Linear dispersion characteristics

The linear dispersion characteristics of the wave model may be investigated by
Ž .assuming an incident wave of the form hsa exp i V tyKx , substituting it into the

Ž .linearized, constant depth form of Eq. 1 , and then solving for VrK which represents
the phase celerity of the wave form as dictated by the wave model. After normalizing

'the phase celerity CsVrK by the shallow water wave speed gh , one gets
2C 1 tanh kh 1qr q 1yr jŽ . Ž .

s , 2Ž .( 22 kh rq 1yr j' Ž .gh

Ž .Ž .in which rsC rC s 1r2 1q2khrsinh 2kh , and jsKrk is the ratio of theg p

incident arbitrary wave-number to the specified wave-number of the model equation.
According to linear theory the exact expression for wave celerity C for an arbitrarye

wave number K is given by

C tanh j khe
s . 3Ž .(

j kh'gh

Ž .) Ž .For a selected hrL ratio L: wavelength the corresponding kh and r values may
Ž . Ž .)be computed, and then by varying jsKrksKhrkhs hrL r hrL in the neigh-

Ž .)bourhood of the fixed hrL , the approximate and exact phase celerities may be
Ž . Ž . Ž .computed for a range of arbitrary hrL values. Fig. 1 compares Eqs. 2 and 3 for
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Fig. 1. Comparisons of linear theory phase speed and the phase speed of the present wave model for three
Ž .)different specifications of the model parameters which correspond to shallow hrL s0.1, intermediate

Ž .) Ž .)hrL s0.3, and deep hrL s0.5 water waves.

Ž .) Ž .three different selected hrL values. When the arbitrary hrL value is the same as
Ž .)the selected hrL ; that is js1, CsC hence there is no error. In the closee

neighbourhood, for 1r2-j-3r2, C is virtually inseparable from C and the accuracye
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is quite high. Only for relatively large deviations of j from unity the errors become
sensible but not unacceptable.

2.2. Linear shoaling characteristics

An important aspect in modelling wave transformations over variable sea bed is the
linear shoaling characteristics of the wave model employed. The standard Boussinesq
equations with the effects of variable depth incorporated predict the linear shoaling with

Ž .less than 1% error if hrL -0.06 while the alternative form of the Boussinesq
Ž .equations do better and satisfy the same criterion for hrL -0.3, as reported by Nwogu

Ž . Ž .1993 . Beji and Nadaoka 1996a give a similar result for their improved Boussinesq
equations.

The present model does not suffer from any inherent depth restriction; if the incident
wave frequency coincides with the prescribed wave frequency of the model the linear
shoaling rate is predicted exactly for any relative depth. This point may be easily

Ž .demonstrated using the approach introduced by Madsen and Sørensen 1992 . An
Ž . w Ž . xincident wave of the form hsa x exp v tyHk x d x is substituted into the wave

Ž . Ž .equation and the higher derivatives of a x and k x are neglected so that an expression
Ž . Ž .for the spatial variation of a x is obtained. Carrying out this procedure for Eq. 1

Ž .results in a rasy C r2C , which is the same as the expression given by linearx g x g

theory.
If the incident wave frequency and wave-number are taken to be arbitrary, as in

Section 2.1, then deviations from the exact linear shoaling rate in the neighbourhood of
the specified model frequency and wave-number may be investigated. As outlined in the
preceding paragraph, the procedure may be carried out in a straightforward manner;
however, the expressions are lengthy and therefore no detail is given here. Fig. 2

Žcompares the variations of the linear shoaling coefficient a that is, for a rasya h rh,x x
.see Madsen and Sørensen, 1992 for details of the wave model and of the linear theory

for three different cases which correspond to respectively shallow, intermediate, and
deep water specifications of the model equation parameters. In each case, when the
incident wave parameters and the model equation parameters are identical the linear
shoaling coefficients become identical as well, indicating that the wave model predicts

Ž .)the linear shoaling rate exactly. Deviations from the theory in the vicinity of hrL are
more appreciable compared to those in Fig. 1 because the shoaling characteristics of a
wave model are dictated by expressions an order higher than those of the dispersion
characteristics.

2.3. Solitary waÕes

The solitary wave represents a balance between nonlinearity and dispersion. As long
Ž .as C is not exactly equal to C , Eq. 1 contains both dispersion and nonlinearity,p g

which implies that it must admit a permanent wave of the solitary type as an analytical
solution. Thus, we seek a solution of the form

y2hsH cosh xyC t rl , 4Ž . Ž .s s

where H is the prescribed wave height, l and C are respectively the length scale ands s

the phase speed of the solitary wave which are yet unknown constants to be determined
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Ž . Ž .from the wave equation. Substituting Eq. 4 into Eq. 1 and solving for l and C sos s
Ž . Ž .that Eq. 4 satisfies Eq. 1 exactly, we obtain

4
23 C yC C q bHŽ .p g pž / C C qC 2bHŽ .3 p p g

l s , C s q , 5Ž .)s s2 2C 3Cb k C H g gg

3 2 4 2Ž .where bs g 3y2C rC yk C rg is the coefficient of the nonlinear term in Eq.g p p4

Ž .1 . A matter of historic concern is immediately evident from the form of l . It becomess

zero when C sC ; that is, purely nondispersive waves cannot maintain a permanentp g

form simply because there exists no dispersivity to counterbalance the steepening action
of nonlinearity. However, allowing the lowest-order dispersion by approximating Cp

2 2 2 2Ž . Ž .' ', gh 1yk h r6 and C , gh 1yk h r2 , as in the Boussinesq theory, isg
Ž .sufficient to obtain a permanent form. If these approximate forms are used in Eq. 5 and

the higher-order dispersion contributions are dropped,

34h 1qHrh 1 HŽ . 'l , , C , gh 1q , 6Ž .(s s ž /3H 2 h

Žwhich are in complete agreement with the classical expressions see for instance Miles,
. Ž .1980 . In particular, it is interesting to note that l is the same as the Rayleigh 1876s

3(result and for small Hrh it may be approximated as 4h r3H , which is the well-known
expression.

2.4. Stokes waÕes

Ž .As for the solitary waves, we shall assume that the wave Eq. 1 is capable of
producing the second-order Stokes waves:

hsa cos k xyv t qb cos 2 k xyv t , 7Ž . Ž . Ž .
in which a and v are the prescribed primary wave amplitude and frequency, k and b

Ž . Ž .are to be determined from the wave model. Substituting Eq. 7 into Eq. 1 and
collecting the zeroth- and first-order terms result in

b
2ksk , bs a , 8Ž .

3C C yCŽ .p p g

where the interaction of the primary wave with the second-harmonic is excluded in the
above analysis to be consistent with the second-order perturbation approach. It must be
indicated that, unlike a truncated perturbation solution, the present wave model, being an
evolution equation, always produces a nonlinear dispersion effect which makes k

Ž .different from the linear theory wave number k see Beji and Nadaoka, 1996b .
According to the Stokes theory the amplitude of the second-harmonic for an arbitrary

Ž .relative depth Wiegel, 1964, p. 29 is

1
cosh kh 1q cosh 2khž /1 22b s ka . 9Ž .s 32 sinh kh
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Ž .Fig. 2. Variations of the coefficient of the linear shoaling gradient a for a rasy a h rh according tox x
Ž .) Ž .)linear theory and the present wave equation for shallow hrL s0.1, intermediate hrL s0.3, and deep

Ž .)hrL s0.5 water specifications of the model parameters.

3'Considering the deep water waves, C s grk , C s C r2, and b s g.p g p 4
1 2Ž . Ž .Thus, comparing Eq. 8 with Eq. 9 , bsb s ka , which is the same as thes 2

second-order theory predicts. For relatively intermediate and shallow depths b differs
from b at most by 7%, as is shown in Fig. 3, where the difference percentage,s

Ž .100 b yb rb , is depicted for a wide range of relative depths. Since the Stokes theorys s
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Ž . Ž . Ž .Fig. 3. Percentage of difference between b Stokes theory and b present wave model , 100 b y b r b , fors s s

a wide range of relative depths.

Ž .is reliable only for small Ursell numbers see Mei, 1989, p. 620 the lower hrL range in
Fig. 3 should be viewed with caution.

3. Evolution equations

A set of evolution equations describing the spatial changes of the component wave
amplitudes of a prescribed incident wave field propagating over arbitrary water depths is
now derived. A Fourier series representation of the surface displacement with spatially
varying amplitudes and phases is assumed:

q`

Ž . xiw v ty k x d xHn nh x ,t s A x e , 10Ž . Ž . Ž .Ý n
nsy`

' Ž .where is y1 , A x is the spatially varying complex wave amplitude, v is then n
Ž .radian frequency which is equal to nDv, Dv being the frequency of resolution. k xn

is the spatially varying wave-number determined according to the linear dispersion
Ž . Ž .relation of Eq. 1 for the local depth h x and the radian frequency v :n

1 C yC C C yCŽ . Ž .p g p p g2 3C v y C C qC k q v k y k s0. 11Ž .Ž .g n p p g n n n n2 22 k 2k

Ž . Ž . Ž .Substituting Eq. 10 into Eq. 1 and neglecting the third-order derivatives of A x ,n
Ž .on the premise that the spatial variations of A x is slow, result in the followingn

second-order nonlinear differential equation that determines the spatial variation of each
complex component:

d2A d An n
ia qa q a q ia AŽ .2 1 s 0 n2 d xd x

q`

yi Žk qk yk . xm nym ns ib k qk A A e , 12Ž . Ž .Ý m nym m nym
msy`
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Ž .where free index n covers the range from y` to q`. The spatial derivatives of k xn
Ž .higher than the first have been neglected in accordance with the model Eq. 1 . The

coefficient of the nonlinear terms, b , has already been defined; the rest of the
coefficients are

1 C yC C C yCŽ . Ž .p g p p g2 3a sC v y C C qC k q v k y kŽ .0 g n p p g n n n n2 22 k 2k

1 C yC 3C C yCŽ . Ž .p g p p g 2a s C C qC y2 v k q kŽ .1 p p g n n n2 22 k 2k

C yC 3Ž .p g
a s C k yv2 p n n2 ž /2k

1 C yC 3Ž .p g
a s C C q C yC C q C k yv k ,Ž .Ž . Ž . Ž .s p g p g p p n n n x2x x ž /2 2k

13Ž .

Ž . Ž .in which k is computed from Eq. 11 by differentiating it with respect to x. Noten x

that a is the linear dispersion relation of the wave model and is identically zero in0
Ž . Ž .virtue of Eq. 11 . However, if the wave numbers in Eq. 10 are selected as bound wave

Ž .numbers then a is not zero any more and it must be retained in Eq. 12 . In principle,0

the wavenumbers may be chosen either way, here they are selected as free wave
Ž .numbers according to Eq. 11 , which numerically proved to be a better choice except in

the simulation of the Stokes second-order waves.
The linear shoaling coefficient a is a function of the bed slope and therefore a As s n

may be considered a slowly varying contribution, just like the nonlinear term A A .m ny m

Then, by assuming a A and A A locally constant, an analytical integration withs n m ny m
Ž . Ž .respect to x becomes possible. Following Bryant 1973 we multiply Eq. 12 by

Ž .yira exp yia ra x so that it may be re-written as2 1 2

q`d d A a k qkŽ .n s m nymyi a x ra yi a ra x1 2 1 2e s i A e qb Ýnž /d x d x a a2 2msy`

=A A eyi Žk mqk ny myk nqa 1 ra 2 . x , 14Ž .m nym

in which a has been set to zero. Ignoring the spatial variations of a A and A A0 s n m ny m

and integrating with respect to x result in

d A an s
sy And x a1

q` k qkm nym yiŽk qk yk . xm nym nq ib A A e .Ý m nym
a qa k qk ykŽ .1 2 m nym nmsy`

15Ž .
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Ž .Eq. 15 in its present form is not suitable for numerical treatment and should be
manipulated further. The summations are first re-arranged to run in the positive range

1Ž . w Ž . Ž .xonly. Then, A x is set to a x y ib x so that the evolution equations for the realn n n2

Ž . Ž .variables a x and b x are obtainedn n

da an s
sy and x a1

Nyn
q q qqb a a b ya b cos u q a a qb b sin uŽ . Ž .Ý m nqm nqm m m nqm m nqm

ms1

ny11
y y yq b a a b qa b cos u q a a yb b sin uŽ . Ž .Ý m nym nym m m nym m nym2 ms1

16Ž .
db an s

sy bnd x a1

Nyn
q q qyb a a a qb b cos u y a b ya b sin uŽ . Ž .Ý m nqm m nqm m nqm nqm m

ms1

ny11
y y yy b a a a yb b cos u y a b qa b sin uŽ . Ž .Ý m nym m nym m nym nym m2 ms1

17Ž .

where N is the number of frequency components retained in the solution, and

k yk k qknqm m nym mq ya s , a s ,q ya qa d a qa d1 2 1 2

dqsk yk yk , dysk qk yk ,nqm m n nym m n

x x
q yu s k yk yk d x , u s k qk yk d x . 18Ž . Ž . Ž .H Hnqm m n nym m n

0 0

It should be remarked that the linear shoaling characteristics of the original equation
are preserved in the above formulation. The free index n runs from 1 to N, resulting in
2 N number of nonlinearly coupled first-order differential equations for the unknown

Ž . Ž . Ž . Ž .components a x and b x . Once the a x and b x are obtained the free surfacen n n n
Ž . Žmay be constructed from Eq. 10 . Various numerical integration techniques e.g.,

.Adams–Bashford–Moulton, Bulirsch–Stoer, Runge–Kutta are available for the integra-
Ž . Ž .tion of Eqs. 16 and 17 . Here, the Runge–Kutta fourth-order formulation is preferred

as it proved to be the fastest while being as reliable as the others.
Ž .An alternative formulation is possible via a change of variable A x sn

Ž . Ž . Ž .P x exp iHk dx which removes the sine and cosine functions as in Bryant 1973 . Then n

resulting evolution equations are simpler but their numerical integration requires smaller
Ž .spatial steps e.g., usually 1r5 of the step required for the above equations and

therefore the computational efficiency is questionable.
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4. Numerical simulations

The evolution equations derived in Section 3 are now used for the purposes of
ascertaining their reliability and exploring the capabilities of the wave model.

4.1. Harmonic generation in shallow water

Ž .Chapalain et al. 1992 conducted a series of experiments concerning nonlinear
shallow water waves undergoing harmonic generation over constant water depth. The
experiments were done for four different cases named respectively as the trial A, C, D,
and H. The experimental conditions and wave parameters are given in Table 1.

All the experiments listed in Table 1 are numerically simulated using the evolution
equations derived in Section 3. In the computations six harmonic components v snv ,n 0

ns1, . . . , 6 were used with v denoting the primary wave frequency. Fig. 4 shows the0

measured and computed harmonic components for the first four harmonics for the trials
A, C, D, and H. Overall, the numerical simulations appear to be in good agreement with
the measurements. The beat lengths are slightly underestimated; this is probably due to
the limitation of the wave model to relatively narrow-band cases. Since the third and
fourth harmonics fall outside the narrow-band range of the primary wave the restriction
is somewhat violated.

4.2. Nonlinear waÕe eÕolutions oÕer a submerged bar

Nonlinear transformations of random waves travelling over a submerged bar were
Ž .investigated by Beji and Battjes 1993 in laboratory experiments that revealed the

relative importance of the effects shaping the wave spectrum. The waves were first
observed to undergo harmonic generation due to nonlinear interactions in the shoaling
region and then the bound harmonics were released as the water depth increased in the
lee side of the bar. For relatively long waves an initially single-peaked spectrum was
observed to transform to a double-peaked spectrum. Due to the absence of near-resonant
interactions, the short wave evolutions were not substantial.

The experimental measurements for random waves initially having a JONSWAP type
Ž .wave spectrum with peak frequencies of f s0.5 Hz long waves and f s0.8 Hzp p

Ž . Ž . Ž .short waves are simulated using Eqs. 16 and 17 . For each case, the dominant
frequency for the model equation was set to the mean frequency of the incident
spectrum. The records of the surface elevation at Station 1 were divided into 10
segments of 2048 data points and then each segment was Fourier transformed. Out of

Table 1
2Ž . Ž .Trial h cm T s ´ s a rh ms kh U s´ rm0 r

A 40 2.5 0.105 0.528 0.38
C 40 3.5 0.105 0.371 0.76
D 30 2.5 0.118 0.452 0.58
H 40 3.0 0.084 0.433 0.45
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Ž .Fig. 4. Experimental data on harmonic generation in shallow water Chapalain et al., 1992 compared with the
computations for the trials A, C, D, and H for the first four harmonics. Scatter: experiment, solid line:
computation.

the 1024 unique pairs the first 325 Fourier components, which covered a frequency
range of 0.0125–4.0 Hz, were found to be quite sufficient to represent the incident wave
spectrum hence the spectral model was run for 10 different realizations with Dvs2
p=0.0125 rdrs and Ns325, using the measured Fourier components as the incoming
boundary condition at Station 1.

Fig. 5 shows the comparisons for measured and computed spectra at three selected
stations for the long and short wave cases. The spectra were obtained after ensemble
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Fig. 5. Comparisons of the experimental measurements of nonlinear random wave propagation over a
Ž .submerged bar with the numerical simulations. Left column: Long-wave evolutions f s0.5 Hz . Rightp

Ž .column: Short-wave evolutions f s0.8 Hz . Station 2: upslope 1:20, water depth 0.16 m; Station 4:p

horizontal bottom, water depth 0.1 m; Station 6: downslope 1:10, water depth 0.3 m.

averaging all the realizations and frequency smoothing five neighbouring components.
Each spectrum then has 100 degrees of freedom and 14% normalized standard error. The
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Ž .Fig. 6. Comparisons of the field measurements of Nakamura and Katoh 1992 with the numerical simulations
for incident waves with mean wave height 1.8 m and mean frequency 0.2 Hz. Station 10: Incident boundary,
3200 m from the shoreline, water depth 24 m; Station 9: 2100 m from the shoreline, water depth 14 m; Station
8: 1300 m from the shoreline, water depth 9 m.
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agreement of the computations with the both sets of measurements is remarkably good,
and small discrepancies are attributed to the inherently narrow-banded nature of the
wave model, which gives rise to errors in computed wavenumbers well outside the
neighbourhood of the dominant wave wavenumber.

4.3. WaÕes in nearshore zone

Ž .Nakamura and Katoh 1992 carried out field measurements from 25 February 1989
Ž .to 1 March 1989 at the Hazaki Oceanographical Research Facility HORF near

Kashima, Japan. The site of the field observations is a natural sandy beach facing the
Pacific Ocean. Ten ultrasonic wave gauges were used, of which seven were installed on
the 427 m-long observatory pier while the remaining three were deployed at water

Ž . Ž . Ž .depths of 9 m Station 8 , 14 m Station 9 , and 24 m Station 10 , located respectively
at distances of 1.3, 2.1, and 3.2 km from the shoreline. Data was continuously sampled
at a rate of 2 Hz for 2-h durations, at 6-h time intervals. A quantitative assessment made

Ž .by Nwogu et al. 1992 using the maximum entropy method provides convincing
evidence that for practical purposes the wave field in this particular region may be
considered unidirectional.

Since the first seven measurement stations were located in the surf zone the majority
of the waves were breaking and the wave model in its present form could not be used.
Therefore, only the nearshore Stations 8, 9, and 10 were considered; the measured data
at Station 10 served as the incoming boundary condition. Comparisons were made for
the data of February 25, which represents a typical sea state with a peak frequency of
f s0.175 Hz and mean wave height 1.8 m.p

The collected data at Station 10 was segmented into 12 groups of 1024 data points
and Fourier transformed. Of the 512 unique transformed pairs, the first 360 components
which covered a frequency range between 0.002 to 0.7 Hz were considered sufficient to
represent the incident spectrum. The dominant frequency of the wave model was set to
the peak frequency of the incident wave spectrum and the computations were performed
for 12 different realizations with Dvs2 p=0.002 rdrs and Ns360. Fig. 6 shows
the measured and computed spectra at Stations 10, 9, and 8. Each spectrum has 192
degrees of freedom and 10% normalized standard error. The agreement is quite
reasonable, especially if allowances are made for the uncertainties involved in the
unidirectionality of waves and the exact form of the bottom topography.

5. Concluding remarks

A spectral model based on a weakly-nonlinear unidirectional wave equation is
developed. The resulting evolution equations describe the nonlinear transformations of
narrow band wave fields over arbitrary depths with acceptable accuracy. The perfor-
mance of the spectral model for non-breaking waves appears to be reliable, as evidenced
by the comparisons with the experimental and field measurements. To extend its
applicable domain to the surf zone, where the effects of breaking waves must be taken
into account, a semi-empirical approach in the form of a dissipation term may be

Ž .adopted as in Beji and Nadaoka 1997b .
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