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Abstract 

Variability of spectral estimates is examined with respect to the nonlinearity of 
the wave field considered. Both measured field data and numerical simulations are 
used for checking the extent of variations, which are quantified as histograms that 
closely follow the chi-square distribution. An absolute assessment of the variations 
over the entire frequency band of a spectrum is also made and found to approach to a 
mean of 70% regardless of the frequency concerned. Finally, it is observed that a 
nonlinearly evolving wave field of initially constant spectral shape gradually 
assumes a spectral variability, which is characterized by the chi-square distribution. 
The last finding provides a clue for a possible cause of the variations observed in the 
estimates of spectra. 

Introduction 

Despite the important implications concerning uncertainties in the estimation of 
wave loads, deviations of individual spectral samples from the final spectral estimate, 
as computed through ensemble averaging and frequency smoothing, appear to have 
received little attention. Borgman (1972) questioned the validity of the use of the chi- 
square confidence interval for high sea conditions and tested the accuracy of the 
method using wave data from a hurricane. His comparison with the theory yielded 
some discrepancies but the overall conclusion was that the chi-square approximation 
was acceptable even for hurricane waves. Donelan and Pierson (1983) presented an 
extensive examination of wind-generated laboratory and field wave data with special 
emphasis on the sampling variability of the spectral peak. They showed that while 
the scaling according to the spectral peak would bias the spectral estimates, the 
sampling variability of the spectra was in good accord with the chi-square 
distribution. The latter finding is in line with Borgman's (1972) conclusion. 

Assoc. Prof., Department of Naval Architecture and Ocean Engineering, Istanbul Technical 
University, Maslak 80626, Istanbul, Turkey. 
2 Professor, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan. 

682 



COASTAL ENGINEERING 1998 683 

It is well known that nonlinear evolutions of surface gravity waves are highly 
dependent on the phase values of the interacting wave components. Thus, unlike 
linear waves, depending solely on the initial phase values, a nonlinear random wave 
field of a certain spectral shape may evolve quite differently from a wave field of the 
same spectral shape but different initial phases. Variations in such nonlinearly 
evolved spectra are not negligible and therefore a closer examination may lead to 
interesting results. In particular, some hints as to the source of the variability 
observed in spectral estimates may be gained. 

This work first examines the sampling variability of the spectra of field 
measurements in the nearshore zone (Nakamura and Katoh, 1992) and confirms that 
the chi-square distribution is a good approximation to these variations. The 
agreement with the theory is remarkable because for these highly nonlinear waves 
the surface displacements do not exactly satisfy the Gaussian distribution. Absolute 
deviations of the individual spectra from the ensembled mean are also computed for 
the entire frequency band and found to resemble a white-noise with a mean level of 
approximately 70%. The effect of nonlinearity on the spectral variability is 
investigated by performing a numerical test, which simulates the nonlinear evolution 
of an initially constant spectral shape over a gently decreasing depth. The numerical 
results show that the initially constant spectral shape gradually assumes a variability, 
which is in accord with the chi-square distribution. This finding indicates that 
nonlinearity may be a responsible mechanism for the observed spectral variability. 

For practical applications, the crucial aspect of the spectral variability lies in the 
uncertainties it implies in the estimation of wave loads, which is essential for a safe 
design. Possible further investigations on the subject are mentioned in closing. 

Analysis of Field Measurements 

The spectral variations are first examined by using field data. Two particular data 
sets from the field measurements of Nakamura and Katoh (1992) were selected; 
namely, the data of 25 February 1989 and 28 February 1989. The measurements 
were performed at the Hazaki Oceanographical Research Facility (HORF) near 
Kashima, Japan. The site of the field observations was a natural sandy beach facing 
the Pacific Ocean. Ten ultrasonic wave gauges were used; of which seven were 
installed on the 427 m-long observatory pier while the remaining three were 
deployed at water depths of 9 m (Station 8), 14 m (Station 9), and 24 m (Station 10), 
located respectively at the distances 1.3, 2.1, and 3.2 km from the shoreline. 

The data of 25 February 1989 was recorded prior to a storm and displayed a 
typical sea state with significant wave height ff.,= 1.5 m and period T,=4.8 s at the 
offshore station (Station 10) where the waves were essentially linear. On the other 
hand, the data of 28 February 1989 was recorded in the aftermath of the storm and 
the spectrum at Station 10 represented a swell with Hs=2.2 m and TS=12A s; the 
waves were nonlinear. While the water depths at Stations 10 to 8 were too deep to 
cause depth-induced breaking, most of the waves at the remaining stations were 
either breaking or broken. 
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For computations the data at each station was first segmented into M=12 groups 
of N= 1024 data points and Fourier transformed. Out of the 512 unique Fourier pairs 
the first 256 components, which covered the frequency range of 0.0-0.5 Hz, were 
considered sufficient to capture almost all the wave energy present and therefore the 
subsequent computations were performed by using the first 256 transformed pairs. 

For each separate set, comprising the Fourier components a„mand bnmfor 

n = 1,...,256 and m = 1,...,12 the Fourier amplitudes Cn
2
m = a2

nm + b]m were frequency 
smoothed by a five-point running average 

CL--.\.CL. (i) 
1    n+2 

J ; = „-? 

Using the above frequency smoothed values; a segment averaging was performed 

C„2=— fem, (2) 

which in turn could be used to obtain the spectral estimates Sn = C2
n I A/ with 

2x5x12 = 120 degrees of freedom. Here, A/ = 1/NAt = 1.953* 10"3 Hz, and 
At = 0.5 s is the sampling interval. 

Since it has implicity been assumed that the process is approximately Gaussian, 
the 90% confidence level for the estimated spectral variance with 120 degrees of 
freedom may be computed as (see Bendat and Piersol, 1971, p.l 14) 

120S„ <S< 
1205„ 

•0.90, (3) 
<^12O;0.O5 ^120;0.95 \ / 

where S„ is the true but unknown spectral variance corresponding to the frequency 

nAf . Substituting Xno,om = 146-57 and *i2o;o.95 = 95.70 gives 

P(0.82S„ < S„ < 1.25SJ = 0.90, (4) 
which indicates that the true spectrum is known to within ±25% or a range of 43% 
at the 90% confidence level. Figure 1 shows the estimated spectrum with 120 DOF 
and a single realization with 2 DOF for the data of 28 February 1989 at Station 10. 

Station 10 Station 10 

0.05 0.1 0.15 
Frequency (Hz) 

0.05 0.1 0.15 
Frequency (Hz) 

Figure 1. The spectral estimate on the left has 120 degrees of freedom and is within -18 to +25% of 
the true spectrum at the 90% confidence level. The 90% confidence limits are shown by dashed lines. 
The spectral estimate on the right is a single realization with 2 degrees of freedom. 
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Hypothetically, the random variable r = C2
n I SnAf is distributed according to 

exp(-r) for r greater than zero. Since Sn is not known, the estimate S„ can be used 

for testing the hypothesis that the computed r values will follow the exponential 
law. 

The computations were done for the data of both 25 and 28 February 1989 using 
all 12 segments with 256 components covering the frequency range 0.0-0.5 Hz. 
Consequently, 3072 values of r were obtained. Strictly speaking, vanishingly small 

values of Sn should have been avoided to prevent possible errors, however no 

problems were encountered and therefore the entire range of Sn values was used. 

In Figure 2 the histograms for the 3072 values of r for a class interval 0.05 wide 
is shown over the range 0 < r < 5 for three selected stations. Each histogram has been 
normalized by its value in the first interval (0.00-0.05). 
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Figure 2. Normalized histograms of the ratio, r, of raw spectral estimates to the smoothed average 
spectral estimates for Stations 10, 6, and 2. Left column: 25 February 1989, right column: 28 February 
1989. The solid line is the theoretical curve exp (-r). 
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In order to obtain quantitative estimates of the spectral variations, the field data is 
analyzed in a different manner. Instead of treating the spectral variations regardless 
of frequency, the mean absolute percentage of deviations from the estimate for each 
frequency component are computed according to the formula 

1   n \S„ 

l£  m = l 

•C2 /A/ 
(5) 

and then plotted over frequency. Figure 3 shows the results corresponding to the 
stations shown in Figure 2. 

Station  10 150% Station 10 

Station 6 150% - Station 6 

Station 2 150% Station 2 

Figure 3. Mean absolute percentage of spectral variations over frequency as computed from equation 
(5) for the stations of Figure 2. 

As it is seen from the above graphs, the mean absolute percentages of individual 
deviations from the estimated spectral values exhibit a random distribution over 
frequency with a mean of approximately 75%. Further computations have shown that 
the number of frequency averaging determines the exact value of the mean 
percentage with the trend that the higher the number of frequency merging the higher 
the resulting mean percentage. This is to be expected because the frequency 
averaging essentially pulls down the estimated spectral shape, resulting in smaller 
and smaller spectral values. Therefore, if a meaningful mean deviation percentage 
were to be obtained, it would be best not to introduce any frequency smoothing at all. 
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As an alternative, instead of C„2
m , one could use C*m in equation (5) to eliminate the 

quantitative effect of frequency smoothing. Computations without any frequency 
smoothing but with different number of FFT points and of ensemble averaging have 
yielded that the mean absolute deviations center around 70% with no sensitivity to 
the number of FFT points and to the number of ensemble averaging. Likewise, use of 
C,2,   in equation (5) has yielded nearly the same numerical value for different 

frequency averaging operations. Thus, it has been concluded that the mean absolute 
deviations center around 70% with a random-noise type appearance over frequency 
regardless of the characteristics of the wave field considered. 

A possible cause for the noise-like distribution of spectral variations over entire 
frequency band may be attributed to a nonlinear mechanism allowing continuous 
energy flow among spectral components. For testing the validity of such a notion, a 
numerical experiment was carried out with supportive results. The computations and 
results are described in detail in the following section. 

A Numerical Experiment 

Using a nonlinear wave model, nonlinear evolution of an initially constant 
spectral shape over decreasing water depth is now investigated. The wave model may 
be considered as a generalized KdV equation (Korteweg and de Vries, 1895), which 
is valid for arbitrary ratios of depth to wavelength (Nadaoka et.al., 1994; Beji and 
Nadaoka, 1997a) 

(C  -C ) C (C  - C ) 

+ i[C,(C,)x+<C,-C,)(C,),]i7 + *g 

2k1 

(      cg   *2cM 2 
(6) 

i-2-pr—r- (n2)x=o, Cr        8     I 
where Cp, Cg, and k are respectively the phase and group velocities and the wave- 
number computed according to the linear theory dispersion relation for a dominant 
wave frequency w and a given local depth h, the subscripts x and t indicate partial 
differentiation with respect to space and time, respectively. 

Based on the above unidirectional wave equation a spectral model was developed 
(Beji and Nadaoka, 1997b; 1998) resulting in a set of evolution equations describing 
the spatial changes of the component wave amplitudes of a prescribed incident wave 
field. No detail is given here; the complete derivation can be found in Beji and 
Nadaoka (1998). It must be indicated that the wave model itself is not crucial so long 
as it contains a nonlinear mechanism to generate harmonics thus allowing continuous 
redistribution of energy. 

For numerical investigations a uniformly decreasing depth of 1:50 slope followed 
by a horizontal section is selected. Waves first steepen due to decreasing depth and 
then the energy exchange takes places as they travel over the shallow constant depth 
region. The water depth at the incident boundary is 25 m, which reduces to 5 m after 
a distance of 1000 m. For the next 1000 m, the water depth remains constant at 5 m. 
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The wave field at the incident boundary is assumed linear with a Bretshneider type 
spectral shape and a typical mean period Tm~l2 s. For ensuring the linearity of the 
incident wave field as well as preventing any possible breaking in the shallow region, 
the incident mean wave height is taken H„,= 1.0 m, a moderate value. Twelve 
realizations with constant spectral shape but different initial phase assignments are 
performed. As in the field measurements, the computations were done using 256 
Fourier pairs with A/ = 1.953 x 10~3 Hz, and a five-point running average was applied 
for frequency smoothing. Thus, all the statistical values given in the previous section 
apply to the numerical simulations as well. 

In Figure 4, the left column shows the histograms for three selected stations while 
the right column gives the mean absolute percentage of spectral variations for the 
same stations. 

Station 2 Station 2 

Station 4 
150% Station <•. 

Illllllli!iltltlilltltiitmili.i..i,l..i,ii —. 

0 12 3 4 5 

frequency (Hz) 

Figure 4. Histograms of spectral variability (left) and mean absolute percentage of variations (right) 
for an initially constant spectral form at three different locations. Station 1 (not shown) is the incident 
boundary at x=0 m and h=25 m; Station 2, * = 250 m and /i=20 m; Station 3, x=750 m and h= 10 m; 
Station 4, x=2000 m and h=5m. Histograms for Station 2 and 3 are normalized by their largest values 
whereas histogram for Station 4 is normalized by its value in the first interval, as in Figure 2. 
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From the graphs for Station 2 it is seen that the histogram is quite unlike the 
theoretical chi-square distribution (due to the initially imposed unvarying spectral 
heights for all realizations) but increasing nonlinearity begins manifesting itself in 
the lower frequency portion of the wave spectrum by introducing an appreciable 
variability in that particular region. At Station 3, the histogram is broader but still not 
quite like its theoretical shape. The effect of nonlinearity has now spread to the 
higher frequency part of the spectrum; however, the main frequency band (0.05-0.12 
Hz), which contains the primary energy of the spectrum remains almost unaffected as 
can be observed by remarkably low percentages of mean absolute variations. The 
main frequency band is the last to be modified because the sub- and super-harmonics 
must reach to appreciable levels before they could interact with it. After travelling 
the shallow constant depth region of 1000 m, the wave field at Station 4 is 
completely modified by the wide-spread nonlinear interactions and it has attained a 
spectral variability which is in excellent agreement with the chi-square distribution. 
Also, the mean absolute percentages of deviations show a white-noise type random 
distribution over frequency with a mean of 75%, as for the field measurements given 
in Figure 3. The results of overall computations imply the existence of a nonlinear 
mechanism behind the observed spectral variability. This nonlinear mechanism needs 
not be in the form of a second-order nonlinearity as in here, it may be a cubic 
nonlinearity, e.g. the nonlinear Schrodinger equation, or-a higher order nonlinearity 
that would permit energy exchange among spectral components. 

While the chi-square distribution is linked to the properties of stationary Gaussian 
processes, the examination of the field data used here shows that this may not be 
strictly the case. For instance, computing the histograms for the surface elevation 
distributions at Stations 10 and 6 of 28 February 1989 data results in the graphs 
shown in Figure 5. While the distribution of Station 10 may be accepted as Gaussion, 
the distribution of Station 6 clearly diverges from the theoretical curve. However, the 
histograms of spectral variabilities for both Station 10 and Station 6 satisfy the 
theoretical chi-square distribution very closely, as is seen in Figure 2. This particular 
point was Borgman's (1972) principal motivation for investigating the validity of the 
chi-square confidence intervals for high sea conditions. 

0.8 

0.6 

0.4 

0.2 

0 

Station 10 Station 6 

-1 0 1 
Surface elevation (m) 

-1 0 1 
Surface elevation (m) 

Figure 5. Histograms for distributions of surface displacements for the data of 28 February 1989 at 
Station 10 and Station 6. 
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The point that the wave field needs not be truly Gaussian in order that the 
corresponding spectral variations be chi-square distributed is especially mentioned 
here because except for a few stations of the data of 25 February 1989, almost all the 
other data (measured or computed) were actually representing nonlinear waves. 

Concluding Remarks 

Analysis of the field data comprising linear and highly nonlinear wave fields has 
confirmed the validity of the standard assumption that the spectral variabilities 
follow the chi-square distribution. It is also observed that the wave field does not 
necessarily need to be truly Gaussian for its spectral variability to follow the chi- 
square distribution. The numerical simulation of a nonlinearly evolving spectrum has 
shown that an initially constant spectral shape gradually assumes a variability, which 
is in perfect agreement with the chi-square distribution. Therefore, nonlinear 
interactions may be at least partially responsible for the variability observed in 
spectral computations. Once the spectral variability is attained, it remains preserved 
even if the wave field becomes linear as, for instance, by breaking or moving into 
deeper regions. 

The quantitative assessments of the variability show that on the average 70% 
deviation of a spectral component from the smoothed and segment averaged value is 
possible. In estimating the extreme wave loads this percentage may be interpreted as 
an indicator of the additional transient loads. For making reliable assessments, it is 
necessary to investigate the actual wave load variations by performing computations 
with wave fields having such variable spectra. 
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