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A fully dispersive weakly nonlinear water wave model is developed via a new approach
named the multiterm-coupling technique, in which the velocity field is represented by
a few vertical-dependence functions having different wave-numbers. This expression
of velocity, which is approximately irrotational for variable depth, is used to satisfy
the continuity and momentum equations. The Galerkin method is invoked to obtain
a solvable set of coupled equations for the horizontal velocity components and shown
to provide an optimum combination of the prescribed depth-dependence functions
to represent a random wave-field with diversely varying wave-numbers. The new
wave equations are valid for arbitrary ratios of depth to wavelength and therefore
it is possible to recover all the well-known linear and weakly nonlinear wave models
as special cases. Numerical simulations are carried out to demonstrate that a wide
spectrum of waves, such as random deep water waves and solitary waves over constant
depth as well as nonlinear random waves over variable depth, is well reproduced at
affordable computational cost.

1. Introduction

Marked by strong interactions of waves with the seabed topography as well as the
foamy appearance of breaking waves, coastal zone offers vivid examples of nonlinear
phenomenon. Offshore, in the open ocean, it is a rare event to observe anything but
steep Stokes-type waves breaking in somewhat different fashion. Yet, while all these
well-confirmed observations continue to remind us of the inadequacy of linear wave
models, considerable barriers associated with nonlinearity hamper our enthusiasm
greatly to use nonlinear models in practical applications. It would obviously be a
desirable prospect to have a wave model that can describe the nonlinear wave evolu-
tions at arbitrary depths at affordable computational cost by introducing plausible
approximations to the formulation. This work aims precisely at achieving such a
goal.

The standard way of developing a wave model is to introduce a suitable depth-
dependence function, or put another way, to facilitate a depth-integration of the gov-
erning equations. By doing so, the vertical dependence is effectively removed, result-
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ing in differential equations in the horizontal propagation directions only. A certain
price must of course be paid for such convenience. For instance, a depth-integrated
wave model cannot handle highly nonlinear wave motions such as overturning of the
wave tip; likewise, sharp variations in bottom topography require special handling
(Kirby 1986; Porter & Staziker 1995). However, for practical purposes such draw-
backs do not pose major restrictions; for a sufficiently realistic wave spectrum it is
acceptable to model wave transformations prior to incipient breaking, and natural
seabed is usually of a gently varying form. Therefore, a depth-integrated nonlinear
wave model presents itself as an attractive alternative.

The Boussinesq equations can provide quite an accurate description of nonlinear
wave phenomenon in the near-shore region. The major setback of these equations is
their applicable depth, which is restricted to less than a quarter of the wavelength.
Although several successful attempts for extending their applicable range have been
reported (see, for example, Witting 1984; Madsen et al. 1991; Nwogu 1993) even
an improved model cannot be relied on if the depth becomes comparable with the
wavelength. Equally importantly, as the nonlinear terms proportional to vertical
velocity component are all neglected, the Stokes-type waves cannot be generated by
any Boussinesq model.

The mild-slope equation of Berkhoff (1972) has no restriction on depth; the simu-
lated waves may propagate at arbitrary depths with the phase and group velocities
determined by the linear theory dispersion relation in its full form. However, un-
steady wave evolutions or random waves cannot be described by this equation, as its
applicability is limited to linear monochromatic waves with single phase-speed. The
time-dependent forms of the mild-slope equation (see, for example, Smith & Sprinks
1975), on the contrary, can describe the dispersive evolution of linear random waves;
but the bandwidth of the wave spectrum is required to be quite narrow. In addition
to these restrictions, these equations have the drawback of not being able to simu-
late nonlinear effects which are known to be especially appreciable in the near-shore
region.

The present work offers a generalized approach in handling both dispersivity and
nonlinearity. The full-dispersivity for diversely varying wave-numbers is attained
by introducing a number of depth-dependence functions (instead of a single depth-
dependence function as in the formulation of the mild-slope-type equations) together
with Galerkin’s produce, which provides a smooth blending of discrete vertical-
dependence functions to represent a broad spectrum of waves with acceptable er-
rors. Although nonlinearity is retained to the lowest order only, the derivation of the
higher-order versions is a simple task because the exact forms of the continuity and in
particular the momentum equations are quite manageable, allowing straightforward
extensions.

The outline of the paper is as follows. The next section states the governing equa-
tions and the boundary conditions. In §3 the depth-integrated form of the continuity
equation and an exact alternative form of the Euler equations are given. Section 4
introduces the vertical-distribution function and thus specifies the vertical depen-
dence of the velocity field. The new wave equations are derived in §5 and comments
are made on their special cases. A detailed account of the dispersion characteristics
of these equations are given in §6. Section 7 outlines the numerical algorithm and
presents sample simulations for several cases. The last section is devoted to conclud-
ing remarks.
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2. Governing equations and boundary conditions

The governing equations of an incompressible inviscid homogeneous fluid are given
by

∇ · u+
∂w

∂z
= 0, (2.1)

∂u

∂t
+ (u · ∇)u+ w

∂u

∂z
= −1

ρ
∇p, (2.2)

∂w

∂t
+ (u · ∇)w + w

∂w

∂z
= −1

ρ
∇p− g, (2.3)

∂u

∂z
= ∇w, ∂u

∂y
=
∂v

∂x
, (2.4)

where u, w are, respectively, the horizontal velocity vector and vertical velocity
component, p the pressure and g the gravitational acceleration. A bold face symbol
indicates a vector with x- and y-components only, that is, u = (u, v) and x = (x, y).
The two-dimensional gradient operator, (∂/∂x, ∂/∂y), is denoted by ∇. The origin
of the coordinate system is taken at the still water level with positive z-axis pointing
upward. Equation (2.1) is the continuity equation, (2.2) and (2.3) are the Euler
equations of motion, and the irrotationality conditions are stated in (2.4).

The boundary conditions for a free surface flow bounded by an impermeable rigid
bottom of arbitrary shape may be stated as follows.

p = 0, at z = η(x, t), (2.5)

w =
∂η

∂t
+ u · ∇η, at z = η(x, t), (2.6)

u · ∇h+ w = 0, at z = −h(x), (2.7)
in which η(x, t) is the free surface elevation, h(x) is the local water depth as measured
from the still water level. The first condition states that the pressure is zero (for
convenience) at the free surface. Equation (2.6) is the kinematic free surface condition
which asserts that the particles on the surface remain there. Finally, equation (2.7)
is the bottom condition for a varying depth with finite slope.

3. Depth-integrated continuity and momentum equations

In its present form the continuity equation is not suitable for the development of a
depth-integrated wave model. To this end we refer to the depth-integrated continuity
equation which is exact:

∂η

∂t
+∇ ·

(∫ η

−h
u dz

)
= 0. (3.1)

Later, in accordance with our closure relation for the velocity field we shall work
with u at z = 0 instead of u at the actual free surface z = η(x, t). Invoking a Taylor
series expansion of u in z, evaluating the result at z = η(x, t), and keeping only the
lowest-order nonlinear contribution gives

∂η

∂t
+∇ ·

(∫ 0

−h
u dz + ηu0

)
= 0, (3.2)
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where u0 is the horizontal velocity vector at the still water level z = 0. Equation (3.2)
cannot be evaluated any further unless a closure relation completely defining the
vertical dependence of u is invoked.

An exact momentum equation for irrotational flow can be derived from equa-
tions (2.2)–(2.5) as given in the Appendix:

∂u

∂t
+∇

[
gη +

∫ η

z

∂w

∂t
dz + 1

2

(
us · us + w2

s

)]
= 0, (3.3)

where us, ws are the velocity components at the free surface z = η(x, t) while u, w are
the velocities at an arbitrary depth z, as denoted before. In the following, however,
we shall use the dependent variables (u0, w0) at the still water level z = 0. Employing
an approach identical to that used in deriving equation (3.2), equation (3.3) becomes

∂u

∂t
+∇

[
gη +

∫ 0

z

∂w

∂t
dz + η

∂w0

∂t
+ 1

2

(
u0 · u0 + w2

0

)]
= 0, (3.4)

in which u0, w0 are the velocities at the still water level z = 0. Since only the lowest-
order nonlinear terms are retained, equations (3.2) and (3.4) are correct to O(ε2)
in nonlinearity. As there is no restriction on the applicable depth of equations (3.2)
and (3.4) the nonlinearity parameter ε may be considered as ka or a/h (a and k
are respectively typical wave amplitude and wave-number), depending on the non-
dimensionalization procedure adopted. An alternative is to use the parameter ga/C2

p

with Cp denoting the wave phase velocity (Beji 1995). This unified definition includes
ka and a/h as its special cases and avoids problems associated with the domains of
validity.

4. A closure relation

Mathematical procedure of obtaining a water-wave equation is in general a con-
version process from the governing equations defined in three-dimensional (x, y, z)
space to the wave equations to be defined in horizontal two-dimensional (x, y) space.
For this conversion, as indicated before, it is necessary to specify the vertical depen-
dence of the velocity field. In principle, any specification which fulfils the bottom
and irrotationality conditions is permissible; of course the quality of the solution is
directly dependent on the form adopted. For instance, the Boussinesq equations are
obtained by introducing an asymptotic expansion of the velocity potential around
the long wave limit, in which the vertical dependence of the velocity field is repre-
sented by polynomials in z. Such an asymptotic expansion necessarily restricts the
applicable depth of the resulting equations by the terms retained, which, for practical
reasons, cannot be many. Obviously, a wave model without depth restriction cannot
be constructed in this manner and a more general approach to represent the vertical
distribution of the potential field must be introduced.

A natural choice for the vertical-dependence function follows from the general
solution of Laplace’s equation for horizontal bottom:

Φ(x, z, t) =
∫ +∞

−∞
A(k, t)

cosh k(h+ z)
cosh kh

exp (ikx) dk, (4.1)

where k is the wave-number, Φ(x, z, t) is the two-dimensional potential function and
A(k, t) is the wave-number spectrum of this particular potential. Equation (4.1) is
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exact only when both k and h are independent of the spatial coordinates; for variable
depth the exact solution of Laplace’s equation is quite complicated (see, for instance,
Miles 1985). Nevertheless, if the depth varies slowly it is plausible to expect that (4.1)
is still a good approximation with k and h referring to their local values, as in the
mild-slope equation (Mei 1983, p. 87). In the following we shall adopt this line of
approach to keep the final equations as simple as possible. The precise meaning of
this approximation is clarified at the end of this section. It should also be noted
that the general solution (4.1) is subject only to the bottom boundary condition
and its applicability is not necessarily restricted to linear waves as the linearity or
nonlinearity of the wave model is dictated by the free-surface boundary conditions.

In this work, as it is evident from (3.2) and (3.4), a perturbation approach is
adopted by using the velocity components at the still water level (u0, w0) and re-
taining only the lowest-order nonlinear terms. This is an acceptable truncation so
long as the deep water nonlinear resonant interactions (Phillips 1960) are neglected.
However, inclusion of the higher-order contributions is straightforward and can be
accomplished in the same manner; such a model would be desirable for the simulation
of nonlinear wave modulations on deep water.

Considering equation (4.1), the horizontal velocity vector is expressed as a sum,
each term comprising a vertical-dependence function Fm(z, kmh) and a corresponding
velocity vector at the still water level Um(x, t) which is independent of z:

u(x, z, t) =
N∑
m=1

Fm(z, kmh)Um(x, t), Fm(z, kmh) =
cosh km(h+ z)

cosh kmh
, (4.2)

where Um(x, t) is the mth component of the horizontal velocity vector at the still
water level and km =| km |. Note the resultant horizontal velocity vector at z = 0 is
the sum of the depth-independent velocity components: u0 =

∑
Um.

Unlike the discrete version of (4.1) (i.e. the integral replaced with a summation
over different wave-numbers) equation (4.2) does not impose any definite horizontal
dependency on the velocity components and therefore provides greater freedom for
the representation of the velocity field. Naturally, this enhanced freedom requires
the additional work of determining different Um(x, t), which is accomplished here by
the Galerkin procedure. In contrast to the spectral methods based on the discrete
form of (4.1) (see, for instance, Fenton & Rienecker 1980), the Galerkin method
leads to couplings among different velocity components even for linear waves and
hence endows the wave model with the capability to propagate broad-banded wave
fields by retaining only a few terms in (4.2), as is demonstrated in §7 (a). Such an
approach of representing the dynamics of a broad-banded wave field may be termed as
the multiterm-coupling technique. Since the accurate representation of the velocity
profile leads to better dispersion characteristics, it is sufficient to take only a few
terms in (4.2) for excellent linear dispersion characteristics over a wide frequency
band. Nonlinear dispersion characteristics on the other hand are dictated by the
perturbation terms retained in (3.2) and (3.4) and these terms enable the resulting
wave model to accommodate amplitude-dispersion.

The vertical velocity is obtained from equation (2.1) by substituting (4.2) and
then integrating from bottom to an arbitrary depth z:

w(x, z, t) = −
N∑
m=1

∇ ·
[

sinh km(h+ z)
km cosh kmh

Um(x, t)
]
. (4.3)
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It is worthwhile to point out that, when both k and h are taken to be spa-
tially varying quantities, w(x, z, t) satisfies the bottom condition, equation (2.7),
exactly for the horizontal velocity specified in (4.2). Clearly, this advantage has
been purchased at the expense of the irrotationality condition, which now reads
uz − ∇w = O[∇(kmh)(∇ · Um)]. The approximate character of the present for-
mulation for variable depth originates from this small but non-zero rotationality.
Nevertheless, as the demonstrated success of the mild-slope-type equations for vari-
able bathymetry justifies such an approximation, it is adopted here as well, in order
that refraction effects can properly be accounted for.

5. Fully dispersive weakly nonlinear wave equations

Having established the depth-dependence of velocity field by (4.2), the continuity
equation (3.2) may now be evaluated:

∂η

∂t
+

N∑
m=1

∇ ·
[(

ω2
m

gk2
m

+ η

)
Um

]
= 0, (5.1)

where use has been made of the linear dispersion relation ω2
m = gkm tanh kmh for

notational convenience. Its appearance is a natural consequence of the assumption
made about the vertical dependence of the velocity field. Equation (5.1) is correct
to O(ε2) in nonlinearity and incorporates the effect of varying depth through km,
which is in general not constant.

If there were a single U as in the Boussinesq formulation, a simple substitution
of (4.2) and (4.3) into (3.4) would be sufficient to obtain the momentum equation
necessary to solve for U . In this case however there are N number of unknown ve-
locity vectors (Um,m = 1, . . . , N) which in turn necessitate N momentum equations
corresponding to each Um. In such a case the Galerkin weak formulation, a proce-
dure distinguished by its close correspondence with variational formulations, offers a
well-established and straightforward approach. According to this method, after sub-
stituting (4.2) and (4.3) into (3.4), the resulting equation is multiplied by the depth-
dependence function, Fn(z, knh), and integrated over the depth. Since the depth-
dependence function has N different modes, one obtains a total of N vector equations
corresponding to each mode. These equations together with the continuity equation,
(5.1), constitute a system of 2N+1 number of coupled nonlinear differential equations
which can be used for obtaining 2N + 1 unknowns (η,Um(um, vm),m = 1, . . . , N)
hence the complete solution to the problem posed. If the procedure is carried out∫ 0

−h
Fn

{ N∑
m=1

Fm
∂Um
∂t

+∇
[
gη + η

∂w0

∂t
+ 1

2(u0 · u0 + w2
0)
]}

dz

=
∂

∂t

∫ 0

−h
Fn

{ N∑
m=1

(1− Fm)
k2
m

∇(∇ ·Um) + 2
N∑
m=1

∇
[

(1− Fm)
k2
m

]
(∇ ·Um)

}
dz

(5.2)

where u0 =
∑
Um as indicated before. The vertical component of the surface velocity

w0 may be obtained from (4.3) by setting z = 0 or from the kinematic free surface
condition.

Evaluating the integrals in (5.2) the final form of the momentum equation is
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obtained as
N∑
m=1

Anm
∂Um
∂t

+Bn∇
[
gη + η

∂w0

∂t
+ 1

2

(
u0 · u0 + w2

0

)]

=
∂

∂t

N∑
m=1

[
Cnm∇(∇ ·Um) +Dnm(∇ ·Um)

]
, (5.3)

where

Anm =
ω2
n − ω2

m

k2
n − k2

m

, Ann =
gω2

n + h(g2k2
n − ω4

n)
2gk2

n

,

Bn = ω2
n/k

2
n, Cnm = (Bn −Anm)/k2

m, Dnn = ∇Cnn,

Dnm =
4

(k2
m − k2

n)
∇km
km

[
Anm − (k2

m − k2
n)Cnm

]
+

4
(k2
m − k2

n)
∇h
h

[(Ann − 1
2Bn)(Amm − 1

2Bm)]1/2


, (5.4)

in which the cyclic wave frequencies and corresponding wave-numbers are related by
the linear theory dispersion relation as in (5.1). The free index n runs from 1 to N ,
resulting in N momentum equations for the component vectors Um (m = 1, . . . , N).
Thus, equations (5.1) and (5.3) constitute a solvable set of coupled equations to
describe the evolutions of a fully dispersive weakly nonlinear wave field. The full-
dispersivity for a broad-banded wave field can be attained by taking only a few
terms, N = 2 or 3, as demonstrated in the following section.

An important special case is the single-component (i.e. a single-term representation
of u and w: N = 1) forms of (5.1) and (5.3), which are:

∂η

∂t
+∇ ·

[(
C2
p

g
+ η

)
u0

]
= 0, (5.5)

CpCg
∂u0

∂t
+ C2

p∇
[
gη + η

∂w0

∂t
+ 1

2

(
u0 · u0 + w2

0

)]
=

∂

∂t

{
Cp(Cp − Cg)

k2 ∇(∇ · u0) +∇
[
Cp(Cp − Cg)

k2

]
(∇ · u0)

}
, (5.6)

where u0 = U1 is the horizontal velocity vector at z = 0. Cp, Cg and k denote
respectively the phase and group velocities and wave-number, computed according
to the linear theory for a prescribed dominant frequency ω and a local depth h.
Equations (5.5) and (5.6) may be considered as a model for narrow-banded weakly
nonlinear wave field propagating over varying depth. In the non-dispersive limit when
Cp ' Cg ' (gh)1/2 the equations reduce to Airy’s shallow water equations. If, instead
of using the exact expressions, Cp and Cg are approximated to the second-order
as (gh)1/2(1 − k2h2/6) and (gh)1/2(1 − k2h2/2) respectively then a straightforward
manipulation yields the Boussinesq equations. Furthermore, (5.5) and (5.6) may be
combined to obtain a single nonlinear wave equation for the surface displacement; the
linearized form of the combined equation gives a new version of the time-dependent
mild-slope equation (Beji & Nadaoka 1997). The removal of the harmonic time-
dependency leads to Berkhoff’s (1972) mild-slope equation, which in turn contains
the Helmholtz equation and Lamb’s shallow water equation as special cases.
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6. Dispersion characteristics of new wave equations

While the Galerkin weak formulation may be regarded as a solvability condition
imposed upon the momentum equation, its additional function of enhancing the dis-
persion characteristics of the resulting wave model should also be appreciated. Simply
stated, this procedure establishes an optimum combination of the prescribed depth-
dependence functions to represent a profile which does not necessarily correspond to
any one of the selected depth-dependence functions. Therefore, the prescribed wave-
numbers need neither cover all the wave-numbers present in a given sea state nor
correspond to harmonic frequencies. In general, judiciously chosen one component
(i.e. a single-term representation of u and w) is sufficient to represent a narrow-
banded sea state accurately; for a broad-banded spectrum two or three components
are enough. The preceding argument is rather abstract and must be exemplified to
provide palpable evidence. Suppose that three vertical-dependence functions with
wave-numbers k1, k2 and k3 are chosen to represent a velocity profile with an arbi-
trary wave-number ka. In mathematical terms we have

Fa(z, kah) = α1F1(z, k1h) + α2F2(z, k2h) + α3F3(z, k3h), (6.1)

where Fm(z, kmh) is as defined in (4.2) and α1, α2, α3 are unknown coefficients to be
determined. According to Galerkin’s method, (6.1) is multiplied by each one of the
trial functions F1(z, k1h), F2(z, k2h), F3(z, k3h) in turn and integrated over the do-
main of interest (−h, 0) to obtain a set of linear algebraic equations for the unknown
coefficients α1, α2, and α3. Figure 1 illustrates the performance of the approximate
solutions obtained by using the trial functions F1(z, k1h), F2(z, k2h), F3(z, k3h) with
k1h = π/4, k2h = π, k3h = 3π. Here, the precise values of kmh’s are not crucial as
long as they are properly distributed over the range of interest. The solid lines show
the depth profiles to be represented (corresponding to the desired ka as computed
from the left-hand side of (6.1)) while the circles denote the computational results
(obtained from the right-hand side of (6.1)). Note that even the extreme cases of
kah = 0 and kah = 500π are well approximated. The fact that Fa(z, kah) for ar-
bitrary kah can be well approximated by only three Fm(z, kmh)’s with fixed kmh’s
verifies the previously stated point that taking only a few terms in (4.2) is sufficient
for representing a random wave-field composed of a wide range of wave-numbers.

For a clearer picture we shall now examine the single and multi-component
forms of the linear dispersion relations as obtained from the new wave equations.
Let us first consider the dispersion relation of a unidirectional single-component
model as obtained from the linearized forms of (5.5) and (5.6) by substituting
η = a exp [ika(x− Cat)], u0 = b exp [ika(x− Cat)] and solving an eigenvalue prob-
lem (see, for instance, Mei 1983, p. 510):

C2
a = C3

p

[
Cg +

k2
a

k2 (Cp − Cg)
]−1

(6.2)

where ka denotes an arbitrary incident wave-number which is free to take on any
value between zero and infinity . Ca is the phase celerity dictated by the dispersion
relation (6.2) for this particular wave-number ka. Cp and Cg are the phase and group
velocities corresponding to the prescribed (fixed) wave-number k (= k1 or k2 or k3).
Figure 2a depicts the dispersion curves for three different cases of k as computed
from (6.2) against the exact expression of linear theory (Ca)e = (g/ka tanh kah)1/2.
The water depth h was set to unity. As is seen, each selected component produces a
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z/h

F(z, kh)
0

–1
0.0

5
4

3

2

1

0.5 1.0
Figure 1. Comparisons of the exact and approximate vertical distribution functions for
©1 : kah = 0, ©2 : kah = 1

3π, ©3 : kah = 2
3π, ©4 : kah = 4

3π, ©5 : kah = 500π. Solid lines are
the exact profiles and circles denote the approximate solutions obtained via Galerkin’s method
using three depth-dependence functions with k1h = 1

4π, k2h = π and k3h = 3π.

dispersion curve which is tangent to the exact curve at the prescribed wave-number
k. Obviously, the applicable domain of the single-component model is not confined
to the selected wave-number itself but, with acceptable errors, to a narrow-band of
wave-numbers centred around that particular wave-number.

The dispersion relation of the multi-component equations with three prescribed
wave-numbers (k1h = 1

4π, k2h = π, k3h = 3π) can be obtained by considering the
linearized versions of (5.1) and (5.3) for N = 3. The procedure is in exactly the same
line with that of the single component but longer; therefore no detail is given here.
Figure 2b compares the exact dispersion relation of linear theory with the relation
obtained from the eigenvalue solution of the wave equations with three components.
The agreement is virtually perfect for the range considered, which covers a very
broad-band wave-number spectrum, indicating that overall the Galerkin procedure
provides quite acceptable approximations.

A question of importance is the number of components to be included for an
acceptable representation of a given sea state. As shown above, taking three velocity
components is quite satisfactory for relatively broad-banded wave fields. Increasing
the number of components usually brings only marginal improvements which are
not justified against the increased computation time. Using only two components on
the other hand causes a filtering effect since the propagation of certain frequency
components is hindered. If the single-component model is used to represent a broad-
banded spectrum the computed wave profiles look smoothed in comparison with
the actual waves as higher frequency wave contributions are not properly accounted
for. Of course, for monochromatic, bichromatic or narrow-banded irregular waves,
use of the single-component model is amply justified and increasing the number of
components brings no detectable improvement at all.
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1
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kh = π/4
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kh = 3π

(b)

(a)

kah 

Figure 2. (a) Linear theory dispersion relation (—) and dispersion relations of the sin-
gle-component wave model for three different cases: kh = π/4 (◦), kh = π (4) and kh = 3π
(�). (b) Linear theory dispersion relation (—) and dispersion relation of the three-component
wave model (◦) constructed from three different depth-dependence functions with k1h = 1

4π,
k2h = π, k3h = 3π.

7. Numerical tests for one-dimensional waves

The general forms of the wave equations, (5.1) and (5.3), are in perfect correspon-
dence with those of the Boussinesq equations. From the computational point of view
this is an important advantage because it allows the adoption of an implicit scheme
which leads essentially to a tridiagonal matrix that can be solved quite efficiently.
The main difference between the wave equations derived here and the Boussinesq
equations is in the number of equations involved. Considering the one-dimensional
case for instance, there are N momentum equations (N is usually no more than 3)
instead of one momentum equation of the Boussinesq theory. This naturally brings
an increase to the computational time when compared with the Boussinesq models
but not a drastic one; especially if a generalized Thomas algorithm, or the so-called
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the block elimination method is used (see Keller 1974). In the present numerical rou-
tine this method was used for solving the linear algebraic equations resulting from
implicit, three-time-level, centred discretizations of the momentum equations:

N∑
m=1

[(
Cnm
∆x2 −

Dnm

2∆x

)
uk+1
m,i−1−

(
Anm + 2

Cnm
∆x2

)
uk+1
m,i +

(
Cnm
∆x2 +

Dnm

2∆x

)
uk+1
m,i+1

]

=
N∑
m=1

[(
Cnm
∆x2 −

Dnm

2∆x

)
uk−1
m,i−1−

(
Anm + 2

Cnm
∆x2

)
uk−1
m,i +

(
Cnm
∆x2 +

Dnm

2∆x

)
uk−1
m,i+1

]
+

∆t
∆x

Bn
{
g(ηki+1 − ηki−1) + 1

2

[
(uk0,i+1)2 − (uk0,i−1)2 + (wk0,i+1)2 − (wk0,i−1)2]}

+
1
2
Bn
∆x

[
ηki+1(wk+1

0,i+1 − wk−1
0,i+1)− ηki−1(wk+1

0,i−1 − wk−1
0,i−1)

]
, (7.1)

where the superscripts and subscripts stand respectively for the time levels and
spatial nodes while ∆t and ∆x denote the corresponding increments in time and
space. The new time level values of the velocities components, uk+1

m,i , are the only
unknowns to be solved at each time step. The resulting matrix equation is block
tridiagonal and can be solved very efficiently by taking advantage of the generalized
version of the Thomas algorithm, as indicated before.

The corresponding discretization of the continuity equation results in an explicit
form which requires no special solution technique:

ηk+1
i = ηk−1

i − ∆t
∆x

N∑
m=1

[(
ω2
m

gk2
m,i+1

+ ηki+1

)
ukm,i+1 −

(
ω2
m

gk2
m,i−1

+ ηki−1

)
ukm,i−1

]
,

(7.2)
in which ηk+1

i is the only unknown. The first two time level values of the surface
displacement and velocity components are specified according to the prescribed initial
conditions, which are usually taken to be zero throughout the computational domain,
representing the state of rest. It is of course possible to commence a computation from
a different initial configuration, such as a given free surface displacement and velocity
field. The incident waves are introduced at the incoming boundary by specifying the
surface displacement and the corresponding surface velocity at each time step.

The coefficients in equation (5.4) are determined by first selecting definite fre-
quencies and then computing the related wave-numbers for the given local depth
according to the linear theory dispersion relation. For computational robustness it
has been found necessary to express the nonlinear terms w2

0 and (ηw2
0)t in terms

of the horizontal velocity components using the linearized kinematic free surface
condition and the linearized continuity equation.

Three cases are presented below as demonstrative simulations: random deep water
waves, solitary waves, and nonlinear waves over variable topography. The model can
simulate the other well-known wave forms (e.g., cnoidal and Stokes second-order
waves); however, they are omitted here for the sake of briefness and considered in
the accompanying work (Beji & Nadaoka 1997).

(a ) Random deep water waves
In order to demonstrate the capability of the new wave equations to represent a

broad-banded wave field with as few as three components (N = 3) the simulation

Proc. R. Soc. Lond. A (1997)



314 K. Nadaoka, S. Beji and Y. Nakagawa

0 1 2 3 4 5

1

0

–1

x/Lm

η/m

surface displacement

1

0

–1

u/m s–1

horizontal velocity at surface

0.1

0

–0.1

u/m s–1

horizontal velocity at mid-depth

Figure 3. Deep-water random wave simulations: linear superposition of 150 sinusoidal waves with
differing frequencies and phases (—) versus numerical solution of the linearized three-component
wave equations (◦) comprising three depth-dependence functions with k1h = 2π, k2h = 3π,
k3h = 5π.

of linear random waves on deep water is considered first. The depth to the mean-
wavelength (denoted as Lm and defined as the average of the wavelengths in a given
record) ratio is one, h/Lm = 1, and the time series is produced by superimposing
150 sinusoidal waves with different frequencies and random phases to generate a
Bretschneider-type broad-banded spectrum. In the computation the following wave
numbers were used: k1h = 2π, k2h = 3π, k3h = 5π. Through numerical experiments
it has been confirmed that as long as the kmh (or rather the ωm) were specified to
cover the spectral range of the incident wave field the computational results showed
negligibly small difference for different sets of kmh. Figure 3 compares the simula-
tions with the generated surface displacement and horizontal velocity at two different
depths after 20 wave periods elapsed over a distance of five wavelengths. For only
three components the performance of the wave model is remarkably good, not only
in simulating the surface deformations but also the velocity field. The selection of the
number of components was based on a compromise between accuracy and computa-
tional time. No sponge layer was needed to improve the absorption at the outgoing
boundary; the computational domain was not longer than shown. Good absorption
of the waves is attributed to the fact that the outgoing waves are radiated at three
different wave-numbers instead of one. This is an important advantage especially in
long time simulation of random waves.

(b ) Solitary wave
The solitary wave represents the balance between nonlinearity and dispersion. Be-

cause of both theoretical and practical reasons the literature about the solitary wave

Proc. R. Soc. Lond. A (1997)



A fully dispersive weakly nonlinear model for water waves 315

0 1 2 3 4 5

0.5

–0.1

x/L

η/h0

a0 / h0 = 0.10

0.5

–0.1

η/h0

a0 / h0 = 0.20

0.5
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Figure 4. Analytical expression of solitary wave (—), a · cosh−2 [(3a/4h3)1/2(x− ct)], compared
with numerical solution of the present wave equations (◦) for N = 1 component. The phase
celerity of the analytical wave is taken as [g(h+ a)]1/2 with h and a denoting respectively to
the water depth and wave amplitude. The water depth is 1 m and the time intervals between
the wave crests are 9, 6, and 5 s, respectively, from top to bottom.

is immense, and any nonlinear wave model that is claimed to be applicable in shal-
low water must be able to simulate this particular wave with acceptable accuracy.
In theory it is not possible to define a finite period and wavelength for the solitary
wave but for practical purposes plausible approximations can be made to specify a
non-zero wave-number and frequency. In the computations h/L was taken as 1/50
so that for a given depth a definite wavelength satisfying the long-wave condition
could be obtained. The wave frequency was then determined from the linear theory
dispersion relation, in compliance with the formulation of the present wave equa-
tions. Numerous tests showed that the computational results were quite insensitive
to the prescribed h/L ratio as long as h/L < 1/50. Figure 4 depicts the numerical
results and the analytical solutions for three different amplitude to depth ratios. The
wavelength unit for the horizontal axis was taken as the distance between the points
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Figure 5. Comparisons of the experimental measurements of nonlinear random wave propagation
over a submerged bar (—) with the numerical simulations (+) using the new wave model with
two components N = 2. Station 2: upslope 1:20, water depth 0.16 m; station 3 and 4: horizontal
bottom, water depth 0.1 m; station 5: downslope 1:10, water depth 0.18 m; station 6: downslope
1:10, water depth 0.3 m; station 7: horizontal bottom, water depth: 0.4 m.

at which the surface elevation was above 0.1% of the amplitude. As is seen from the
figure, except for small phase discrepancies, the simulations are quite satisfying.

(c ) Nonlinear random waves
The last case aims at testing both linear/nonlinear dispersion and shoaling charac-

teristics of the multi-component nonlinear model for random waves. The comparisons
in figure 5 for six different stations are with the experimental measurements of Beji
& Battjes (1994) for nonlinear random waves travelling over a submerged trapezoidal
bar. The water depth in the deeper part of the wave flume is 0.4 m and following
a 1:20 upslope it reduces to a constant depth of 0.1 m. This shallow depth region
continues for 2 m and then a 1:10 downslope section follows, causing the water depth
to increase back to 0.4 m (see figure 1 in Beji & Battjes 1994). The incident wave
field has a JONSWAP type random wave spectrum with h/Lp = 0.1 where Lp is the
wavelength corresponding to the peak frequency of the incident wave spectrum. The
first four stations are in the upslope and constant shallow depth region where the
nonlinear shoaling and harmonic generation take place. The remaining three stations
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are in the downslope region and a substantial high-frequency energy is known to be
present in the wave-field due to harmonic decomposition. This can be observed by
simply comparing the number of zero-crossings at station 2 and station 7. In the
computations two components were used with k1 = kp and k2 = πkp. Here, kp de-
notes the wave-number corresponding to the peak period Tp = 2 seconds. The initial
condition used was the unperturbed state; that is, both the surface displacement and
velocity field were set to zero throughout the computational domain. Time histories
of the measured surface displacement at station 1, which was located at the toe
of the trapezoidal bar, and the corresponding surface velocity were used as the sea-
ward boundary conditions. At the outgoing boundary the Sommerfeld type radiation
boundary condition was implemented. After nearly 10 wave periods elapsed, the wave
field established itself fully in the entire numerical domain, allowing comparisons at
all the stations. Due to space limitations, the comparisons are given only for five
wave periods. Much longer simulations were carried out without any deterioration
in agreement with the measurements. The comparisons show clearly that overall the
two-component model performs quite well in representing this broad-banded nonlin-
ear wave field. As might be expected, numerical tests with three components brought
no sensible improvements.

8. Concluding remarks

A set of fully dispersive weakly nonlinear wave equations has been derived by
specifying the vertical dependence of the velocity field in accordance with the solution
of Laplace’s equation. The Galerkin weak formulation, which is known to be akin to
the variational formulations, is employed for solvability. In their most general forms
the resulting equations can model the propagation of weakly nonlinear, broad-banded
wave fields over arbitrary depths. If the wave-field is narrow banded, the single-
component forms of the equations, which require no more computational effort than
the Boussinesq equations do, may be used conveniently. As there is no inherit depth
restriction on the validity range of these equations they can model the combined
effects of nonlinear refraction–diffraction over arbitrary depths, thus closing a long
remained gap between nonlinear shallow and deep water waves.
The second author was supported by a grant from the Kajima Foundation of Japan and sub-
sequently from TIT during his stay at TIT. The authors thank Professor J. A. Battjes for his
permission to use the experimental data, Mrs E. Tsukamoto for typing the manuscript, and
a graduate student O. Ono for helping with the figures. The paper has benefited considerably
from the extensive comments of an anonymous reviewer.

Appendix

The following is an excerpt from Beji (1997).
Using the irrotationality conditions, (2.4), it is a straightforward matter to cast

the Euler equations, (2.2) and (2.3), into the following forms:

∂u

∂t
+ 1

2∇(u · u+ w2) = −1
ρ
∇p, ( 1)

∂w

∂t
+

1
2
∂

∂z
(u · u+ w2) = −1

ρ

∂p

∂z
− g. ( 2)

Alternatively, these equations may be written down from Bernoulli’s equation. We
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proceed by integrating the vertical momentum equation from an arbitrary depth z
to the free surface η:∫ η

z

∂w

∂t
dz + 1

2(u · u+ w2)
∣∣∣∣η
z

= −
(

1
ρ
p+ gz

) ∣∣∣∣η
z

. ( 3)

The dynamic boundary condition, equation (2.5), requires p(η) = 0 so that, from ( 3),
the pressure at an arbitrary depth z is

1
ρ
p = g(η − z) +

∫ η

z

∂w

∂t
dz + 1

2

[
(us · us + w2

s)− (u · u+ w2)
]
, ( 4)

where the variables evaluated at the free surface z = η are denoted as us, ws while
the variables at an arbitrary depth are left as before. Substitute ( 4) into ( 1) to
obtain the following alternative form of the equation of motion:

∂u

∂t
+∇

[
gη +

∫ η

z

∂w

∂t
dz + 1

2(us · us + w2
s)
]

= 0, ( 5)

which is exact for an irrotational inviscid free surface flow.
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