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A 2-D Numerical Model for Linear Long Wave Propagation 
in Boundary-fitted Curvilinear Grids 
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SUMMARY

In this paper, vertically integrated linearized long wave equations are numerically solved in a boundary-fitted curvilinear 
grid. The equations are first expressed in in the generalized non-orthogonal curvilinear co-ordinates. The cartesian
velocity vectors are also replaced by the contravariant velocity vectors by appropriate combinations of the transformed 
momentum equations. The governing equations in the transformed space are solved in a rectangular mesh of the 
computational grid system. The boundary conditions which are taken into consideration are incoming boundary 
condition, wall condition and outgoing boundary condition. Fischer’s numerical scheme based on a staggered grid 
(Arakawa-C) system is applied to the governing equations in the generalized curvilinear coordinates. For a test case 
linear wave propagation in a circular shaped channel is carried out.

1. INTRODUCTION

In order to solve the two-dimensional (2D) depth-
integrated shallow water equations, finite difference 
method (FDM) is usually preferred due to its simplicity 
and effectiveness. Notwithstanding, for shallow water 
problems, traditional finite difference model has definite 
shortcomings when applied to complicated regions.
Owing to the fact that the stepwise representation of a 
curved lateral geometry in Cartesian grid is only a crude 
approximation, the computational results from a uniform 
Cartesian grid are not much reliable [1]. To prevent this 
handicap, curvilinear grid methods are used so that 
boundary conditions on curved boundaries can be 
satisfied more accurately [5].
In boundary-fitted curvilinear grid models, the physical 
curved region is transformed onto a simpler rectangular 
computational domain by transforming governing 
equations of flow, and then the finite difference method 
is applied to these governing equations. The complexity 
of the resulting equations is basically related to the order 
of derivatives present in the original Cartesian equations. 
Although non-orthogonal co-ordinate transformation is 
the most complex transformation, it has the advantage of 
having least restricted mesh distribution hence the 
highest flexibility of use [5]. In this approach, the 
contravariant components of the velocity vector are used 
as generalized components of velocity in the transformed 
image domain. Shi et. al. (1997) used the transformed 
shallow water equations in terms of contravariant
velocity components to model storm surge. Later, the 
Boussinesq equations in generalized coordinates were 
solved by Shi et. al. (2001).

The coordinate transformations may basically be 
accomplished in two different ways. In the first method, 

primitive variables (u, v, eta) are remained unchanged
while only the independent variables are transformed. In 
this case the transformation may be accomplished easily 
but the equations and the boundary conditions are more 
complex. The second method, on the other hand, makes 
use of the normal components of the velocity vector in 
curvilinear co-ordinates or the covariant components of 
the velocity vector in the curvilinear co-ordinate system
(Warsi, 1998). The obtained equations and the boundary 
conditions are much simpler compared with the first 
method [6].
By using boundary-fitted curvilinear co-ordinate 
transformation, the applicability of conventional finite 
difference methods can be extended to complex 
geometries [8]. Additionally, using structured curvilinear 
grids with finite difference discretizations allows 
programming simplicity. Especially for complicated 
geometries, such as harbours and tidal inlets the 
curvilinear grids pose a real advantage over rectangular 
grids which use a steplike representation of the 
boundaries [6].
Recently, for the simulation of the circulation in marine 
and estuarine regions, curvilinear co-ordinates are 
commonly used. ECOM (Estuarine, Coastal and Ocean 
Model) and POM (Princeton Ocean Model) utilized 
orthogonal curvilinear grids in the horizontal directions 
and sigma-stretched grids in the vertical direction.
Nevertheless, for most estuarine and coastal applications, 
due to complex geometries of coastlines, the orthogonal 
grids can not be generated unless the coastline is 
approximated with simple curves. Generalized 
curvilinear grids should necessarily be preferred for a 
better fit to lateral boundaries and for more accurate 
simulations [1].
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2. GOVERNING EQUATIONS

In rectangular Cartesian co-ordinates, the linearized
continuity equation and x- and y- components of the 
momentum equation are given as 
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where ζ is the free surface elevation, u and v are the 
Cartesian components of the horizontal velocity vector at 
still water level at z = 0, g is the gravitational 
acceleration.

Due to the complex shapes of computational fields, it can 
be necessary to express governing equations in a special 
co-ordinate system.  Boundary-fitted grids are mostly
used to calculate flow in such complex geometries. Being 
adoptable to any geometry is the main advantage of such 
grids. Since the grid lines follow the boundaries, the 
boundary conditions are easily implemented.

Figure 1. Physical and computational domain.

Co-ordinate transformations from a two-dimensional 
Cartesian system (x,y,t) to a two-dimensional curvilinear 
system (ξ,η,τ) are given as




















xx

x




















yy

y
      (4)










t

where the metrics of the transformation are defined as
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Denoting the contravariant velocity components in the ξ-
and η-directions by U and V gives

 **
 VUJuu yx    (7)

where U* and V* are defined as U* = U/J, V* = V/J.
The wave model in curvilinear co-ordinates in terms of 
contravariant velocity components becomes

   

  0
2

1

22
2

1*1




























yyxx
J

g

yx
J

gU
J

  (8)

   

  022
2

1

2

1*1




























yx
J

g

yyxx
J

gV
J

  (9)

0**  












 hVJhUJ (10)

3. BOUNDARY CONDITIONS

Boundary conditions used to visualize this model are 
incoming boundary condition, wall condition, and 
outgoing boundary condition.
The incoming boundary is taken along the η-axis at ξ = 0.
Because the grids always fit the physical boundary, the 
boundary condition can be accurately described. Thus, 
the method can improve the accuracy of simulation and 
make the numerical scheme convenient [1].

Due to the wall condition, the contravariant velocity 
components normal to the wall boundaries becomes zero:

U* = 0 and V* = 0 (11)

Radiation condition ensures the propagation of waves 
without any reflection at the outgoing boundary.
Sommerfeld’s radiation condition is given as

0 xt Cuu (12)
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4. NUMERICAL PROCEDURE

4.1. GRID ORIENTATION

In the numerical application, staggered Arakawa C-grid 
is used and the grid orientations for the variables of 
transformed equations are shown separately in Figures 2,
3 and 4, and together in Figure 5.

            
Figure 2. Grid orientation for variable V*

Figure 3. Grid orientation for variable U*
                        

           
Figure 4. Grid orientation for variable ξ

Figure 5. Grid orientation for all variables

4.2.   DISCRETIZATION OF CONTINUITY     
         EQUATION

Continuity equation in curvilinear coordinates is 
expressed as with Equation (14), where U* and V* are 
components of the horizontal velocity component at the 
still water at z = 0 along the ξ- and η- directions 
respectively.

After imposing the Fischer algorithm, continuity 
equation becomes
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where i and j indices are abscises and ordinates according 
to ξ and η-axes, k is the number of time step, Δt is the 
time step, Δξ shows the step along the ξ-axis and Δη is 
the step along the η-axis. In addition, for the ease of the 
calculation, Δξ = Δη =1 is taken.

4.3.   DISCRETIZATION OF MOMENTUM    
         EQUATIONS

Discretization of ξ component of the momentum 
equation gives the U* values at the new time step and 
discretization of η component of the momentum equation 
gives the V* values at the new time step as shown below
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where ξx, ηx are the derivatives of ξ and η with respect to 
x, and ξy, ηy are the derivatives of ξ and η with respect to 
y, and J is the Jacobian given in equation (9).

5. LINEAR LONG WAVE SIMULATION

The transformed continuity and momentum equations in 
curvilinear co-ordinates are used for the simulation of 
linear long waves in a circular channel. The circular 
channel considered is a half circle covering an arc of 
180°; the outer and the inner radii of the circular channel 
are taken as 100 and 60m, respectively. Since the choice 
of water depth is h=0.5m and the incident wave period
T=7s, the wavelength and the wave number parameters 
are 21m and 0.3 rad/m, respectively. The time resolution 
is taken as 50/Tt  , so that the numerical stability and 
long wave conditions are satisfied. For numerical 
stability the Courant number must be less 1/2√2, and 
long wave condition requires that the ratio between the 
water depth and the wavelength be less than 1/20, which
is calculated as 0.032 for the computations performed. 
At the entrance of the circular channel, a sinusoidal wave 
with uniform amplitude is used, and at the end of the 

circular channel, Sommerfeld’s equation is used as the 
radiation condition. 
Below, the perspective views of the linear long wave 
propagations are seen for t=5T and t=10T, respectively.
The reflection and diffraction features of the wave 
propagation between the inner and outer walls of the 
circular channel result in complicated propagation paths 
as seen from the perspective views. Also, the contours of 
the numerical solution are given from the x-y view.

Figure 6. Perspective view for t = 5T

Figure 7. Perspective view for t = 10T

Figure 8. Contours of the numerical solution at t = 10T
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6. CONCLUSION

In this study, shallow water equations are expressed in 
generalized curvilinear co-ordinate system in terms of
contravariant velocity components. Numerical solution is 
performed using contravariant velocities and as a result,
boundary conditions are expressed in the simplest form. 
Thus, linear shallow water waves propagating in complex 
geometries such as marinas, channels, lakes etc., can be 
simulated more accurately.
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