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Dimensional Analysis
 The thrust 𝑇 of a propeller could depend upon:
a) Mass density of water, 𝜌.

b) Size of the propeller, represented by diameter 𝐷.

c) Speed of advance, 𝑉𝐴.

d) Acceleration due to gravity, 𝑔.

e) Speed of rotation, 𝑛.

f) Pressure in the fluid, 𝑝.

g) Viscosity of the water, 𝜇.

𝑇 = 𝑓(𝜌𝑎, 𝐷𝑏 , 𝑉𝐴
𝑐 , 𝑔𝑑 , 𝑛𝑒 , 𝑝𝑓, 𝜇𝑔)
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Dimensional Analysis
 Multiplying and equating the powers

𝑎 = 1 − 𝑓 − 𝑔
𝑏 = 1 + 3𝑎 − 𝑐 − 𝑑 + 𝑓 + 𝑔
𝑐 = 2 − 2𝑑 − 𝑒 − 2𝑓 − 𝑔

Substituting 𝑎 and 𝑐 in the expression for 𝑏 gives 𝑏 = 2 + 𝑑 + 𝑒 − 𝑔 then
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where 𝜈 = 𝜇/𝜌 is the kinematic viscosity. In general we can write
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Note that since the disc area of the propeller , 𝐴0 =  𝜋 4 𝐷2, is proportional
to 𝐷2, the thrust coefficient can also be written in the form

𝑇
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Dimensional Analysis
 If the model and ship quantities are denoted by the suffixes M and S,

respectively, and if 𝜆 is the linear scale ratio, then
 𝐷𝑆 𝐷𝑀 = 𝜆

If the propeller is run at the correct Froude speed of advance, 𝐹𝑟𝑆 = 𝐹𝑟𝑀,
𝑉𝐴𝑆
𝑉𝐴𝑀

= 𝜆1/2

The slip ratio has been defined as 1 −  𝑉𝐴 𝑃𝑛 . For geometrically similar
propellers, therefore, the nondimensional quantity  𝑛𝐷 𝑉𝐴 must be the same

for model and ship. Thus, as long as  𝑔𝐷 𝑉𝐴
2 and  𝑛𝐷 𝑉𝐴 are the same in ship

and model
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Dimensional Analysis
 The thrust power is given by 𝑃𝑇 = 𝑇 ∙ 𝑉𝐴, so that
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If the model results were plotted as values of
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to a base of  𝑉𝐴 𝑛𝐷 or 𝐽, therefore, the values would be directly applicable to the
ship. But the above coefficients have the disadvantage that they become
infinite for zero speed of advance, a condition sometimes occurring in practice.
Since 𝐽 or  𝑉𝐴 𝑛𝐷 is the same for model and ship, 𝑉𝐴 may be replaced by 𝑛𝐷.
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where 𝑃𝑇 = 𝑇 ∙ 𝑉𝐴 is the thrust power and 𝑃𝐷0 = 2𝜋𝑛 ∙ 𝑄0 is the delivered power

of the open water propeller.



Dimensional Analysis



Propeller-Hull Interaction
 Wake: Previously we have considered a propeller working

in open water. When a propeller operates behind the
model or ship hull the conditions are considerably
modified. The propeller works in water which is disturbed
by the passage of the hull, and in general the water around
the stern acquires a forward motion in the same direction
as the ship. This forward-moving water is called the wake,
and one of the results is that the propeller is no longer
advancing relatively to the water at the same speed as the
ship, 𝑉, but at some lower speed 𝑉𝐴, called the speed of
advance.



Propeller-Hull Interaction
 Froude wake fraction

𝑤𝐹 =
𝑉 − 𝑉𝐴
𝑉𝐴

, 𝑉𝐴 =
𝑉

1 + 𝑤𝐹

 Taylor wake fraction
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, 𝑉𝐴 = 𝑉(1 − 𝑤)

 Resistance augment fraction and thrust deduction 
fraction
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Power Definitions

 Brake power is usually measured directly at the crankshaft coupling by
means of a torsion meter or dynamometer. It is determined by a shop
test and is calculated by the formula 𝑃𝐵 = (2𝜋𝑛)𝑄𝐵, where 𝑛 is the
rotation rate, revolutions per second and 𝑄𝐵 is the brake torque, 𝑁 ∙ 𝑚.

 Shaft power is the power transmitted through the shaft to the 
propeller. For diesel-driven ships, the shaft power will be equal to the 
brake power for direct-connect engines (generally the low-speed diesel 
engines). For geared diesel engines (medium- or high-speed engines), 
the shaft horsepower will be lower than the brake power because of 
reduction gear “losses.” Shaft power is usually measured aboard ship as 
close to the propeller as possible by means of a torsion meter. The shaft 
power is given by 𝑃𝑆 = (2𝜋𝑛)𝑄𝑆.



Power Definitions

 Delivered power is the power actually delivered to the propeller.
There is some power lost in the stern tube bearing and in any shaft
tunnel bearings between the stern tube and the site of the torsion
meter. The power actually delivered to the propeller is therefore
somewhat less than that measured by the torsion meter. This delivered
power is given the symbol 𝑃𝐷.

 Thrust power is the power  delivered by propeller as it advances 
through the water at a speed of advance 𝑉𝐴, delivering the thrust 𝑇. The
thrust power is 𝑃𝑇 = 𝑇𝑉𝐴.

 Effective power is defined as the resistance of the hull, 𝑅, times the 
ship speed 𝑉, 𝑃𝐸 = 𝑅𝑉.

 Propulsive efficiency is defined as
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Different Design Approaches
 Case 1: 𝑃𝐷, 𝑅𝑃𝑀, 𝑉𝐴 are known and 𝐷𝑜𝑝𝑡. is required.

In this case the unknown parameter 𝐷𝑜𝑝𝑡 may be eliminated from 
the diagrams by plotting 𝐾𝑄/𝐽

5 versus 𝐽 instead of 𝐾𝑄 versus 𝐽 as 
follows.
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 1 4𝐽−  5 4 =

𝑄𝑛3

𝜌𝑉𝐴
5

 1 4

= 0.1739 𝐵𝑝1

which are the variables used in charts between pages 192-196. On 
these charts the optimum 𝜂0 and 1/𝐽 are read off at the 

intersection of known 𝐾𝑄
 1 4𝐽−  5 4 value. Afterwards 𝐷𝑜𝑝𝑡 is 

computed using the optimum 1/𝐽 value as 𝐷𝑜𝑝𝑡 = 𝑉𝐴/𝑛𝐽.



Different Design Approaches
 Case 2: 𝑃𝐷, 𝐷, 𝑉𝐴 are known and 𝑅𝑃𝑀 is required.

In this case the unknown parameter 𝑛 may be eliminated from 
the diagrams by plotting 𝐾𝑄/𝐽

3 versus 𝐽 instead of 𝐾𝑄 versus 𝐽 as 
follows.

𝐾𝑄
𝐽3

=
𝑄

𝜌𝑛2𝐷5

𝑛𝐷

𝑉𝐴

3

=
𝑄𝑛

𝜌𝐷2𝑉𝐴
3 =

2𝜋𝑄𝑛

2𝜋𝜌𝐷2𝑉𝐴
3 =

𝑃𝐷

2𝜋𝜌𝐷2𝑉𝐴
3

𝐾𝑄
 1 4𝐽−  3 4 =

𝑄𝑛

𝜌𝐷2𝑉𝐴
3

 1 4

= 1.75 𝐵𝑝2

which are the variables used in charts between pages 197-201. On 
these charts the optimum 𝜂0 and 1/𝐽 are read off at the 

intersection of known 𝐾𝑄
 1 4𝐽−  3 4 value. Afterwards 𝑛 is 

computed using the optimum 1/𝐽 value as  𝑛 = 𝑉𝐴/𝐽𝐷.



Typical Propeller Design
 Given Data
Service speed: 𝑉 = 21 𝑘𝑛𝑜𝑡𝑠 = 10.8 𝑚/𝑠

Effective power with model-ship correlation allowance: 𝑃𝐸 = 9592 𝑘𝑊

Estimated propulsive efficiency: 𝜂𝐷 = 𝑃𝐸/𝑃𝐷 = 0.75

Immersion depth of propulsion shaft: ℎ = 7.5 𝑚

Estimated delivered power at 21 𝑘𝑛𝑜𝑡𝑠: 𝑃𝐷 = 𝑃𝐸/𝜂𝐷 = 9592/0.75 = 12789 𝑘𝑊

Empirically determined wake fraction: 𝑤 = 0.20

Empirically determined thrust deduction fraction: 𝑡 = 0.15

Estimated relative rotative efficiency: 𝜂𝑅 = 1.05

 Design Calculation
Selected propeller diameter (with adequate clearance): 𝐷 = 6.4 𝑚

Selected number of blades (from consideration of vibration forces): 𝑍 = 4

Calculation of velocity of advance (wake speed): 𝑉𝐴 = 𝑉 1 − 𝑤 = 10.8(1 −



Typical Propeller Design

Wageningen B-Series charts: 𝐾𝑄
 1 4 ∙ 𝐽−  3 4 =

𝑃𝐷

2𝜋𝜌𝐷2𝑉𝐴
3

 1 4

=

12477

2𝜋∙1.025∙ 6.4 2∙ 8.64 3

 1 4
= 0.52039

Using the charts given on pages 197 (B4-40), 198 (B4-55), and 199 (B4-70) for 

𝐾𝑄
 1 4 ∙ 𝐽−  3 4 = 0.52039 from the optimum propeller efficiency curve we get

Expanded blade area ratio:              0.40              0.55             0.70

1/𝐽 at optimum efficiency:               1.260             1.275            1.290

𝑅𝑃𝑀 = 60 ∙ 𝑉𝐴/𝐷 ∙ 1/𝐽 :          102.1              103.3            104.5

Corresponding 𝑃/𝐷:                         1.110              1.090            1.070

Open water efficiency 𝜂0:                0.673            0.670            0.663

We proceed to choose the blade area ratio by applying a cavitation criterion 
given by Keller.



Typical Propeller Design
The required thrust is

𝑇 =
𝑅

1 − 𝑡
=

𝑅𝑉

1 − 𝑡 𝑉
=

𝑃𝐸
1 − 𝑡 𝑉

=
9592

(1 − 0.15) ∙ 10.8
= 1044.9 𝑘𝑁

The Keller area criterion for a single-screw vessel gives
𝐴𝐸
𝐴0

=
1.3 + 0.3 ∙ 𝑍 ∙ 𝑇

𝑃0 − 𝑃𝑣 ∙ 𝐷2
+ 𝑘

where 𝑃0 − 𝑃𝑣 = 𝑃𝑎𝑡𝑚. − 𝑃𝑣𝑎𝑝𝑜𝑢𝑟 + 𝜌𝑔ℎ = 98100 − 1750 + 1025 ∙ 9.81 ∙ 7.5 =
171764 𝑁/𝑚2 = 171.8 𝑘𝑁/𝑚2, and 𝑘 is a constant varying from 0 to 0.2. Taking 
𝑘 = 0.2,

𝐴𝐸
𝐴0

=
1.3 + 0.3 ∙ 4 ∙ 1044.9

171.8 ∙ 6.4 2
+ 0.2 = 0.571

Interpolating between 𝐴𝐸/𝐴0 = 0.55 and 𝐴𝐸/𝐴0 = 0.70 for 𝐴𝐸/𝐴0 = 0.571 we get 
𝑁 = 103.5 𝑟𝑝𝑚, 𝑃/𝐷 = 1.087, and 𝜂0 = 0.669. Accordingly the 𝜂𝐷 value becomes:

𝜂𝐷 =
1 − 𝑡

1 − 𝑤
∙ 𝜂0 ∙ 𝜂𝑅 =

1 − 0.15

1 − 0.20
∙ 0.669 ∙ 1.05 = 0.746

This compares well with the value of 0.750 assumed. If a larger difference had been 
found, a new estimate of the power would have to be made, using 𝜂𝐷 = 0.746.



Typical Propeller Design
 Another Example of Calculating Optimum 𝑅𝑃𝑀
A somewhat different example of calculating optimum 𝑅𝑃𝑀 is given below. A 
common problem for the propeller designer is the design of a propeller when the 
required propeller thrust 𝑇 (e.g. from a model test equal to the resistance corrected 
for the thrust deduction) and the propeller diameter 𝐷 (e.g. from the available 
clearance) are known. The advance velocity of the propeller may be estimated from 
the ship speed and wake fraction. The unknowns are the required power and the 
engine 𝑅𝑃𝑀. Suppose that the following data is given for a container vessel.
Thrust: 𝑇 = 142 𝑡𝑜𝑛𝑠 = 142000 ∙ 9.81 𝑁 = 1393000 𝑁 = 1393 𝑘𝑁
Ship speed: 𝑉 = 21 𝑘𝑛𝑜𝑡𝑠 = 10.8 𝑚/𝑠
Advance velocity (Wake speed): 𝑉𝐴 = 21 1 − 0.2 = 16.8 𝑘𝑛𝑜𝑡𝑠 = 8.64 𝑚/𝑠
Selected propeller diameter (with adequate clearance): 𝐷 = 7.0 𝑚
Selected number of blades (from consideration of vibration forces): 𝑍 = 4
Immersion depth of propulsion shaft: ℎ = 5.0 𝑚

 Design Calculation
We begin by considering Keller’s formula for 𝐴𝐸𝑅 with 𝑘 = 0 for the given ship

𝐸𝐴𝑅 =
𝐴𝐸
𝐴0

=
1.3 + 0.3 ∙ 4 ∙ 1393

(98.1 − 1.75 + 1.025 ∙ 9.81 ∙ 5.0) ∙ 7.0 2
= 0.485

For single skrew wake field 𝑘 = 0.2, it may be less if the wake field is good. 



Typical Propeller Design
Obviously 𝑘 is an important parameter affecting the value of 𝐴𝐸𝑅. If it were 
selected as 0.2, 𝐸𝐴𝑅 would be 0.685 instead of 0.485. Now that we have taken 
𝑘 = 0 and consequently the minimum 𝐸𝐴𝑅 must be 0.485. To be on the safe 
side let us select 𝐸𝐴𝑅 = 0.55. Already we have selected 𝑍 = 4 therefore our 
propeller  now is B4-55. Consequently we can use the 𝐾𝑇 − 𝐾𝑄 − 𝐽 diagram of 
B4-55 series. We know the thrust 𝑇 and the diameter 𝐷, hence seek for the 𝑅𝑃𝑀. 
To use the diagram we need to know both 𝐾𝑇 and 𝐽; however at present we can 
only calculate 𝐾𝑇/𝐽

2 as follows
𝐾𝑇

𝐽2
=

𝑇

𝜌𝑉2𝐷2
=

1393000

1025 ∙ 8.652 ∙ 72
= 0.3707

Now when we select a 𝐽 − 𝑃/𝐷 pair in the diagram it must be such that 𝐾𝑇/𝐽
2 =

0.3707. This may be done either by trial-and-error  followed by linear iteration 
or by the graphical method. The graphical method gives the result directly but 
in order to use it we must draw the curve corresponding to 𝐾𝑇 = 0.3707𝐽2 for a 
range of 𝐽 values. Wherever this curve crosses a 𝐾𝑇 value in the diagram of B4-
55, that particular 𝐾𝑇 − 𝐽 pair corresponding to a definite 𝑃/𝐷 ratio in the 
diagram is a correct 𝐾𝑇 − 𝐽 pair. Supposing that we have established the 
following table for various 𝑃/𝐷 ratios using the 𝐾𝑇 − 𝐾𝑄 − 𝐽 diagram (B4-55)



Typical Propeller Design

Our aim now is to select the propeller with maximum open-water efficiency. 
The first examination indicates it may be 𝑃/𝐷 = 1 but to make sure we try the 
close neigborhood of it; 𝑃/𝐷 = 0.95 and 𝑃/𝐷 = 1.05. From these results we 
see that 𝑃/𝐷 = 1 really gives the maximum efficiency hence we select it. Thus 
our final decision for the propeller is B4-55, 𝑃/𝐷 = 1, 𝜂0 = 0.651, 𝐽 = 0.699 so 

that 𝑛 =
𝑉𝐴

𝐽𝐷
=

8.65

0.699∙7
= 1.768 𝑟𝑝𝑠, 𝑁 = 60 ∙ 𝑛 = 106 𝑟𝑝𝑚. Finally, since the 

torque coefficient 𝐾𝑄 = 0.0310, 𝑄 = 𝜌𝑛2𝐷5𝐾𝑄 = 1025 ∙ 1.7682 ∙ 75 ∙ 0.0310, 

𝑄 = 1669322 𝑁 ∙ 𝑚. Power to be delivered 𝑃𝐷 = 2𝜋𝑛𝑄/1000 = 18544 𝑘𝑊



Typical Propeller Design
 Example of Calculating Optimum Diameter
In this example we suppose that from the beginning we have selected the 
engine and its RPM hence we are to select a diameter for maximum efficiency. 

For a fast patrol boat the following data is given.

 Advance velocity of propeller: 𝑉𝐴 = 28 𝑘𝑛𝑜𝑡𝑠 = 14.4 𝑚/𝑠

 Delivered power : 𝑃𝐷 = 440 𝑘𝑊

 𝑅𝑃𝑀 = 720, 𝑛 = 720/60 = 12 𝑟𝑝𝑠

 𝑍 = 5

 𝐸𝐴𝑅 = 𝐴𝐸/𝐴0 = 0.75



Typical Propeller Design
To eliminate the unknown diameter we must use 𝐾𝑄/𝐽

5 as the parameter.

𝐾𝑄

𝐽5
=

𝑄

𝜌𝑛2𝐷5

𝑛𝐷

𝑉𝐴

5
=

𝑄𝑛3

𝜌𝑉𝐴
5 =

2𝜋𝑄𝑛∙𝑛2

2𝜋𝜌𝑉𝐴
5 =

𝑃𝐷𝑛
2

2𝜋𝜌𝑉𝐴
5 =

440000∙122

2𝜋∙1025∙14.45
=0.016

Applying any one of the approaches (graphical or interpolative) described in the 
previous problem we can establish the following table.

In this case the most efficient choice is 𝑃/𝐷 = 1.4 and 𝐽 = 1.19 so that 𝐷 = 𝑉𝐴/𝑛𝐽, 
𝐷 = 14.4/(12 ∙ 1.19) = 1.01 𝑚, 𝐷 = 1𝑚. Since 𝐾𝑇 = 0.153, 𝑇 = 𝜌𝑛2𝐷4𝐾𝑇, 𝑇 =
23500 𝑁. If this thrust is not in accord with the resistance calculations of the boat 
calculations must be repeated for a different speed till the convergence is gained. 
Finally the cavitation possibility must be checked at least by using the Keller 
formula. In this case Keller formula gives minimum 𝐸𝐴𝑅 = 0.59 hence OK.

𝑷/𝑫 𝑱 𝑲𝑻 𝑲𝑸 𝜼𝟎 𝑲𝑸/𝑱
𝟓

1.200 1.085 0.098 0.0237 0.713 0.016

1.300 1.140 0.124 0.0306 0.735 0.016

1.400 1.190 0.153 0.0387 0.747 0.016

1.350 1.165 0.138 0.0346 0.742 0.016


