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Abstract

A spectral domain solution of an improved Boussinesg model is proposed for
simulation of unidirectional nonlinear waves propagating over a gently varying
depth. The wave propagation model accommodates improved dispersion
characteristics as well as mild variations in bathymetry. The numerical
technique is based on the Fourier series expansions of velocity and surface

displacement with spatially wvarying coefficients. Performance of the scheme

is tested against the laboratory measurements of nonlinear wave propagation
over a bar and found to agree well with the experimental data.

1. Introduction

Recent years have witnessed a ceonstantly increasing interest towards the
modelling of nonlinear aspects of ocean waves, particularly in the coastal

zone. The trend originated from the need to elucidate many observed phenomena

which could not be accounted for otherwise. Wave skewness related sediment

transport, influence of breaking on the surf-zone processes, and effects of
harmonic generation on the characteristics of a wave field are but the most
striking examples of such phenomena (Doering and Bowen, 1986, Nadaoka, et al.,
1989, Kojima, et al., 1990, Beji and Battjes, 1993).

Although nonlinear wave propagation models are still in their infancy, at

least in terms of practical applications, there are evidences that these

models, when augmented with appropriate generation and dissipation mechanisms,
may well be the prototypes of the standard models to come. At present, weakly
nonlinear-weakly dispersive wave models, namely the Boussinesg-like models,
seem to be the most promising ones for practical near-shore zone applications.

These depth-integrated eguations at once reduce a three-dimensional problem

to the solution of an equivalent (within the approximations made) two-

dimensional problem. Besides this reduction in dimension, these models pose
less computational problems in comparison with the fully nonlinear, fully

dispersive models.

Basically there are three different ways of tackling with a Boussinesg-type
model. The most common cne is to employ the finite-differences formulations
to approximate the derivatives (Peregrine, 1%67). The second approach is to

make use of Fourier series expansions with slowly wvarying coefficients

(Bryant, 1973), and finally the third is to adopt the method of
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characteristics (Mei and L.eMéhauté. 1966). The last approach was to some
extend used in the past but, due to the inconvenience of irregular grid
locations, is no longer preferable. Here, we shall concentrate on the second
approach only for a cne-dimensional model, and compare the performance of the
scheme against the experimental measurements over a bar (Beji and Battjes,

1993).

2. Governing Equaticns

The classical Boussinesqg equations suffer from the inherent disadvantage of
being shallow water equations. To extend their applicable range numerous
attempts have been made (Witting, 1984, Madsen, et. al., 1991, Nwogu, 1993).
Here we shall use one such an improved model due to Beji and Nadaocka (1994),
which might be viewed as a rectified version of Madsen and Serensen‘s (1992)
work. Accordingly, the dispersion characteristics of the present model are
improved to the extent that waves with wavelengths equal to depth may be
represented with acceptable errors in amplitude and celerity.

The improved Boussinesq equations, as formulated by Beji and Nadacka (1994)

are

n.+V. [(A+n) gl =0, - 1

.+ (a.V)g+g¥n= (1+8) AVIV. (ag) 1 +B-LEVIV. (nVn)]

' . (2)

- (1+P) %‘V(v.qg -p-LLV(V. %),

where g=(u,v) is the two-dimensional depth-averaged velocity vector, 1| is the
surface displacement, h=h(x,y) is the varying water depth as measured from the
still water level, g is the gravitational acceleration, and f is a constant.
The subscript t stands for partial differentiation with respect to time and
V for the horizontal gradient operator. The z-axis is taken vertically upwards

with the origin at the undisturbed free surface.

In linearized forms equations (1) and (2) lead to the following dispersion

relation
£f_ o (1+ﬁkzhz/3) (3)
gh  [1+(1+P) k?h?/3] '

where c¢c=|e¢| is the phase speed, k¥=k/j+k/? and k,, k, are the components of
wave-number vector K in the x- and y-directions respectively.
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Matching equation (3) with a first-order Padé expansicn of the linear theory
dispersion relation requires P=0, which in turn reduces equation (3) to the
classical Boussinesqg dispersion relation. On the other hand, an expansion
correct to the second-order dictates P=1/5, and naturally results in better
agreement with the exact form of the linear theory dispersion relation. Here,

B=1/5 is used in all computations.

For unidirectional waves equations (1) and (2) reduce to

M.+ [({h+n}u] =0, (4)

3 2 (5)
U:+—; (Uz) x+gﬂ= (1+ﬁ) hhxux:+ (1+ﬂ) bTuur+ﬁgflhxﬂu+ﬂg—1';—“’!m:

where the subscripts denote partial differentiation with respect te the
indicated variable. Note for P=0 equations (4) and (5) reduce to the set

derived by Peregrine (1967).

3. Series Expansion Solution

A possible way of solving weakly nonlinear differential egquations, such as
Boussinesq or KdV equations, is to use a Fourier series expansion with ®slowly
varying® coefficients for the variable concerned (Whitham, 1974). The term
*slowly varying® simply implies that variatiens in coefficients over the
characteristic length or time scale are small so that derivatives of the
coefficients higher than the first may be neglected. Such an approach
eventually leads to an infinite number of first order coupled nonlinear
differential equations, which are truncated at an appropriate number and

sclved via a suitable integration technique.

To date there are three spectral Boussinesg models that account for wave
shoaling; namely, consistent and dispersive shoaling models of Freilich and
Guza (1984), and the recent work of Madsen and Serensen (1993). In principle
all these models make the same assumptions and follow the same procedure for
obtaining the evolution equations corresponding to the governing equations
selected. In such an approach, existence of linear shoaling terms forces one
to make further sacrifices in solution accuracy. This point is not explicit
and may only be seen when the formulation of a model for horizontal bottom is
compared with that of a shoaling model. The model developed here is free of
such a drawback and therefore may well compete with horizontal-bottom models,
which are inherently more accurate than any shoaling model given so far.
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An unorthodox approach is now introduced to solve the improved Boussinesg
model in frequency domain. We begin by re-casting (4) and manipulating (5) as

hu=-{n +hu+(nu) .1, (6)

an-«ggbzqmm- [ug% (u?) x*—g-;'p')-ﬂx’ltt] ’
(7)

where use has been made of the linearized continuity equation in re-expressing
the dispersive and shcaling terms in the momentum equation. Linearization in
this manipulaticn is justified because in non-dimensional form both terms, U,
and u,,, are proportional p?(=k’h?, k and h are respectively a typical wave-
number and depth), and the contribution due to the inclusion of the nonlinear
terms would be on the order of ep? (e=a/h, a is a typical wave amplitude)
which is even smaller and an order higher than the classical Boussinesq models
extend. Note that no zeroth order term has been replaced and that the linear

dispersion relation corresponding to (6) and (7) is still the same as (3).

By keeping two variables, 7 and u, we have diverged from the customary way of
dealing with such problems and assumed the burden of selving for an extra
variable, namely u. It is expected that this extra effort will pay back in
terms of solution accuracy. Moreover, the availability of the velocity field

is always an asset in practical applications.

Let the surface displacement and vertically averaged velocity be expressed as

sa

T](X' £) = E an(x) eilu,:-k,,x)

" (8)
ulx, t) = Z pn(x) glteat-kx)

Prpr

in which a,(x)'s and B,(x) ‘s are slowly varying complex coefficients dependent
®,'s are cyclic frequencies satisfying o,=nw, with ®, being the

only upon x,
k,’s are wave numbers as determined from (3},

lowest wave frequency present,
and i=V-1. It is assumed that the following equalities hold as well:

@, =ay, B,=P0% w.=-e, k,=-k (9)

where asterisk denotes complex conjugate.

There may be questions as to the generality of the series expansions in (8).
First of all, for free wave compcnents travelling at their own phase speeds,
obvious that the expressions are proper. As for the so-called "bound®

which are phase locked te a carrier or primary wave, the necessary

it is
waves,
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phase adjustments at every spatial point are taken care of by the individual
components of the complex coefficients as long as the final evolutien
equations correspond to the solution of a non-dispersive representation. This
peint is of crucial importance for cbtaining correct phases for bound waves,
and accomplished via a simple change of variables, as was done by Bryant

(1973).

The algebra involved in derivation of the evelution equations is
straightforward but lengthy and shall not be repeated here. The procedure is
as fellows. First, the series expansions are substituted into the governing
equations. The second and third spatial derivatives of a,(x) ‘s arising from
the term Bgh™f,,/3 are all neglected as well as the products of derivatives.
The dispersion relation, (3), is then used to simplify some of the expressions
containing , and k,. After introducing the new variables, A=a.exp(-ik,x) and
B.=f.exp(-ik.,x), comes the final step of substituting ¥(a,-ib,) for A, and ¥(c,-
id,) for B,, which in turn yield the following evolution equations for the

spatially varying coefficients a,(x), b,(x), c,(x), and d,(x) .
Po (an) %= pran_pibn-mndn

N-n n-1
1

= ‘;—E Yo.m ( Cmdat.m' dmcnonJ b Iz an.m ( cmdn-a+ dmcn-.n)
m=1

o=l
Po [bn) x = Piég+P rbn+mncn

N-n -1
1 1
+ ?E Ya,a (cmcn-nr+ dmdnﬂn) o TE aa.n ( CnCn-m™ dmdn-n)
o=l =1

1% (10)
A (CJ:J x - _hx Cp-@ nbn_ ?E Ya.m {amdnﬁn_ dnan‘p" cmbnom_ bmcnvn)
o=l

n-1
* '%' El ba.m (amdn-m+ bncn-u)

N-n
h (dn) x = _hz dﬂ+ W a,+ 31 Z Yo,m (BNC'",“*‘ cnan+n+bmdno-+ dmbnv-)
o=l
1 n-1
—EZ; an.ﬂ(amcn-n_bmdn—nJ
o=

with the coefficients given as
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po = —2+2pgkin?  p, = ({22B) o2 pgrimn,  p, = 2pgnicin?
kZh 3 3 3
Yo.n = kn_ kmm bn.m = km+kn-.
(11)

where N is the number of harmonics present in the computation, and n=1, 2, 3,
.+«. , N. From the symmetry, all the summations running from m=1 to n-1 may be
arranged to run from m=1 te (n-1)/2 when n is odd, to n/2 when n is even (see

Mei, 1989, p.503).

For a selected number of harmonic compcnents, N, the above equations yield 4N
number of coupled first order nonlinear differential equations which must be
solved simultaneously. There are two well-known integration technigues
suitable for this type differential equations: Runge-Kutta method, and
Bulirsch-Stoer method. Here, because of its superior qualities, the latter is
preferred and adopted in its original form (Bulirsch and Stoer, 1966). A
crucial point is the agreement between the boundary values of the surface
displacement and those of the velocity. For each frequency component, the
averaged-velocity corresponding to a given surface displacement must be
specified in accordance with the linearized continuity equation, uy=c,fs/h,,
where c, is the phase celerity computed from (3) for the water dlopth h,, and
N, is the incident wave amplitude. Any other specification of the velocity
causes superfluous oscillations in the harmonic components, reflecting the
disagreement between what is imposed at the boundary and what is required by

the evolution equaticns.

Once the Fourier coefficients are cbtained at discrete spatial points they are
substituted into the non-dispersive versions of (8) to obtain the time

variations of the surface elevation and vertically averaged horizontal

velocity.

4. Comparisons with Experimental Measurements

Beji and Battjes (1993) carried out laboratory measurements of nonlinear wave
transformations over a submerged bar. Due to harmonic generation in the
shoaling region and subsequently their release behind the bar in the deepening
part of the flume, the case itself is a rather severe test for any nonlinear
wave propagation model. The entire program of measurements is rather involved
and the reader is directed to this particular reference. The cross-section of

the wave flume and the locations of the measurement stations are given in

Figure 1.
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Here, we shall compare only two cases for regular waves. In the first case the
incident wave period is T=2 seconds and the incident wave amplitude is 1 cm
at a depth of 40 cm. The measured wave profile at station 1 (as indicated in
Figure 1) is given as inﬁut. Figure 2 compares the measured (solid lines) and
computed (dots) wave profiles for stations 2-7. The agreement is virtually
perfect except for station 7, where the free higher-harmonics become quite
manifest. Since these higher-harmonics have wavelengths much shorter in
comparison with the incident wave, they may be considered as deep water waves.
Thus, the small discrepancies observed at statioc 7 is attributed to the fact
that at this particular station the applicable range of the wave model is

exceeded.

The second case is actually quite beyond the applicable range of standard
Boussinesq models. Indeed, even for an improved Boussinesq model this test
poses an extreme case. Here, the incident wave period is T=1.25 seconds and
the incident wave amplitude is 1.3 cm at 40 cm depth. As cbserved from Figure
3 the numerical model is not doing as well as the previous case but still
producing acceptable results. Since the incident wave is comparatively short,
the resonance conditions are not satisfied hence the harmonic generation is
quite low. For this reascn alone, at station 7 the free higher-harmonics are

much less than the previous case.

5. Concluding Remarks

A spectral domain sclution of the improved Boussinesg equatioﬁs is developed
for unidirectional wave propagation over gently varying depths. The improved
model makes it possible to propagate waves with wavelengths equal to depth and
accounts for shoaling effects. The numerical approach appears to be quite
accurate as comparisons with the severe experimental cases show. It is hoped
that future tests of this mecdel will be made with actual field measurements
for breaking waves, after a revision of the scheme to take into account tha

dissipative role of breaking.
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