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Abstract

Rayleigh’s instability equation is employed in the context of the water wave growth
problem for different wind profiles. Following Rayleigh’s (1880) approximations, solution
of the singular Rayleigh equation for an arbitrary wind profile is devised in the form of
a Riccati equation. Further, a vertically integrated air motion model is introduced for
calculating growth rates. Two different wind profiles; namely, logarithmic and 1/7-power-
law profiles, are used for comparing growth rates. Variations of the vertical air velocity
by height are shown in graphs to provide visual aspects to the growth rate computations.
In closing, new progress directions are commended.

1. Introduction

Assuming a gradual change in air velocity Rayleigh (1880) derived an equation for the
instability of jets, which is known today as Rayleigh’s instability equation or simply the
Rayleigh equation. However, Rayleigh did not attempt to apply his theory to the problem
of wave generation by wind.

Nearly 80 years later, Miles (1957) proposed a model for the growth of wind waves
on the basis of Rayleigh’s equation with a logarithmic wind profile that was in line
with Rayleigh’s assumption of a gradually changing air velocity. Miles’s model predicts
wave growth rates reasonably in agreement with the observations but underestimates the
growth rate of long waves with phase speeds nearly equal to the wind speed. To improve
the theory considering the effects of small-scale turbulence received most attention (Gent
& Taylor 1976; Jakobs 1987); but results of these works did not differ much from those
of Miles. A comprehensive review of the subject may be found in Miles (1997).

Although various aspects of the problem have been examined, almost universally ac-
cepted assumption of logarithmic mean wind profile has not been questioned at all. It
is indeed the wind profile that basically determines the wave growth rates. Accordingly,
Beji & Nadaoka (2004) introduced a different approach of solving Rayleigh’s instability
equation for arbitrary mean wind profiles. The solution technique, originally suggested
by Rayleigh (1895) himself, was based on re-casting the Rayleigh equation into a form
of Riccati equation. Then, wave growth rates were also computed in an unconventional
way by implementing the dispersion relation of the air-sea interface, which involves the
vertical integration of the disturbed vertical velocity weighted by the wind profile.

Here, by taking advantage of this solution technique, computations of growth rates
for the 1/7-power-law wind profile are made and compared with those of the logarithmic
profile. Variations of disturbed vertical air velocity by height are also presented to provide
some physical insight into the nature of the process. In closing, possible new research
directions on the subject are pointed out.
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2. Rayleigh’s equation and its solution
2.1. Rayleigh’s instability equation

Rayleigh’s instability equation for linearized inviscid shear flow of air over wavy water
surface with a prescribed mean wind velocity U(z) is given by

[U(z) —c] (W' —E*W) = U"(2)W =0 (2.1)

where ¢ is the wave celerity, k is the wavenumber, and W (z) is a function of the vertical
coordinate z only representing the vertical dependence of the disturbed vertical velocity
component of air w(x,z,t) = W(z)exp [ik(x — ct)]. The above equation is obviously
singular at the critical height z = z. where U(z.) = ¢. Analytical solution of the Rayleigh
equation does not exist; therefore, it is the usual approach to resort to a combination of
analytical and numerical methods.

2.2. Solution approach

Based on Rayleigh’s (1895) ideas, Beji & Nadaoka (2004) developed an approach for
obtaining an approximate analytical solution of equation (2.1) around the singular point
z. for an arbitrary wind profile U(z) with non-zero second derivative. In the vicinity of
the singular point z., the wind velocity profile U(z) is approximated by its linearized
form while the second derivative of U(z) is replaced by its constant value at z.. With the
aid of these approximations and change of dependent variable, (2.1) is transformed into
a Riccati type equation

w1

VS + = W 0, (2.2)
where Z = —U"(2:)(z — 2z.)/U’(2.). The detaﬂs of derivation can be found in Beji &
Nadaoka (2004). The above approximate equation provides exact analytical solutions in
the vicinity of the singular point z., which initiate the numerical integration of (2.1)

above and below the singular point. Numerical treatment of the problem was first given
by Conte & Miles (1959) and described explicitly in Beji & Nadaoka (2004).

2.3. Growth rate

Beji & Nadaoka (2004) obtained the wave growth rate in a different way by the use of
the dispersion relation of the air-sea interface:

1 —
2=19 +( @ : (2.3)
k [ (k/c)f o0 ]W(z)dz
where s = p,/p. is the ratio of air density to water density. Defining the complex integral,
k teo
I, = M/ [U(z) — ] W(z)dz, (2.4)
Wo J.

and noting that s ~ 1073 is a small quantity, (2.3) may be approximated as
c~col(1—5/2)/(1—51./2)] ~co(l —s/2+ sl./2), (2.5)

in which ¢y = 4/g/k is the deep water wave celerity. Note that both W (z) and ¢ appearing
in the integral I. are complex; but in evaluating the integral the unknown complex phase
speed ¢ may be taken approximately real as its imaginary part is proportional to s hence
negligibly small. Once W (z) is determined, the complex integral I, hence the growth rate
can be computed as the imaginary part of kc that would promote the growth (or decay)
of the surface elevation:

v =kS(c) = (1/2)skcoS(1e), (2.6)
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where $(1.) denotes the imaginary part of the complex integral I.. Miles (1957) defines
a slightly different, dimensionless growth rate 5, which may be expressed in terms of the
imaginary part of the complex integral I. as

B = (co/U1)*3(L), (2.7)

where U is a characteristic velocity related to the so-called friction velocity u, by the
relation Uy = u./k, Kk being the von Kdrmén constant taken as x = 0.41. Here, all the
wave growth values are presented according to the above definition of 3.

3. Growth rate calculations
3.1. Logarithmic and 1/7-power-law profiles

Conte & Miles (1959) gave accurate numerical computations of the wave growth rates
for a logarithmic wind profile of the form

U(z) = Uy In(z/20), (3.1)

in which U is as defined previously and the roughness height zj is determined empirically,
the most frequently used expression given by Charnock (1955) as 29 = acpu?/g where
aep, ~ 0.011 — 0.018 is Charnock’s constant. Note that for the above logarithmic wind
profile the critical height z., where the wind velocity equals the phase velocity ¢y, is z. =
2o exp (co/U7). The computational results of Conte & Miles (1959) for the dimensionless
growth rate 3 were tabulated against co/U; for three values of the parameter Q = gz /UZ,
which is directly related to Charnock’s constant by Q = k2ayy,.

Besides the logarithmic profile the most commonly used wind profile is the so-called
1/7-power-law profile, which is defined as

Up(2) = Uro(2/10)"/7, (3.2)

where Uy is the wind velocity at 10 m height. Since the comparisons are to be made
with the results of the logarithmic wind profile in terms of the dimensionless parameters
(co/Uy) and €2, it is necessary to modify equation (3.2) for making it compatible with the
logarithmic profile. The dimensionless critical height kz. for the logarithmic wind profile
is

kze = Q(co/Uy) "2 exp (co/Ur). (3.3)

For meaningful comparisons the dimensionless quantities (co/U;) and € must be the
same, which, in view of (3.3), requires kz. be the same. Equation (3.2) is then modified
as

Up(2) = Upp(z/20 — DY7 where U, = co/fexp (co/Uy) — 1]V7, (3.4)

making U,(z)) = 0 and z. = zpexp(co/U1) as in (3.1). In this manner, the direct
dependency of (3.4) on the dimensionless parameters (¢o/U;) and ) is ascertained.

In Table 1 the wave growth rates obtained for the logarithmic and 1/7-power-law-
profiles are given for a range of ¢o/U; values and three different 2’s. The differences
reveal the effect of wind profile on the growth rates. These differences are remarkable
in view of the slight variations between two profiles, as can be seen in Figure 1. On the
other hand, the order of magnitude agreement between the results in a way supports the
reliability of the shear flow approach as a means of estimating wave growth rates.

Figure 2 depicts the real and imaginary parts of W(z) the z—dependent part of the
disturbed vertical air velocity component w(zx, z,t). All the graphs are made for ¢q /Uy = 5
with three different 2’s; 3x 1073, 1 x 1072, and 2 x 10~2 from top to bottom, respectively.
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FIGURE 1. Comparison of logarithmic and 1/7-power-law wind profiles.

Q=3x10"° Q=1x10"7 Q=2x10""
| co/Un | Logarithmic | 1/7 Power | Logarithmic | 1/7 Power | Logarithmic | 1/7 Power |

1 3.533 0.165 3.233 0.133 2.744 0.113
2 3.412 0.865 3.299 0.672 2.925 0.497
3 3.431 1.964 3.205 1.487 2.775 1.008
4 3.428 3.149 2.962 2.166 2.424 1.370
5 3.297 4.067 2.544 2.481 1.907 1.448
6 2.971 4.413 1.963 2.316 1.287 1.209
7 2.438 4.057 1.289 1.755 0.677 0.772
8 1.748 3.244 0.647 1.020 0.224 0.333
9 1.018 2.022 0.194 0.368 0.026 0.049
10 0.410 0.951 0.018 0.041 0.0002 0.0005

TABLE 1. Logarithmic and 1/7-power-law profile comparisons of the dimensionless growth rate
B for a range of ¢o/U; values and for three different 2’s.

The graphs on the left column show Wgr(z) and Wy(z) for the logarithmic wind profile
while those on the right for the 1/7-power-law wind profile. Recalling equations (2.4) and
(2.7) the imaginary part of W(z), Wi(z) is more important as it determines the growth
rate of waves. Since (1) is a weighted integration of Wr(z) it is acceptable to conclude
that the greater the area under the imaginary part the higher the growth rate. Then,
considering for instance the graphs from top to bottom for both columns it is fairly easy
to see that the growth rates would be getting less as we proceed from top to bottom.
That is indeed the case as can be observed for row ¢o/U; = 5 from Table 1.
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FI1GURE 2. Change of real Wg and imaginary W; components of normalized vertical air velocity
with non-dimesionalized height for logarithmic wind profile (Left column) and 1/7-power-law

profile (Right column).
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4. Concluding remarks

The problem of wave generation by wind is considered from the point of view of shear
instabilities as modelled by Rayleigh’s instability equation. Employing the solution tech-
nique developed by Beji & Nadaoka (2004) for arbitrary wind profiles wave growth rate
computations are performed for logarithmic and 1/7-power-law wind profiles. Numerical
values show differences depending on the wind profile and clearly indicate the determin-
ing role of the individual wind profile on the wave growth rates. However, it must also
be observed that these differences are moderate and maintain a meaningful level thus
supporting the concept of shear instabilities as an acceptable tool in calculating growth
rates. The vertical velocity W (z) profiles provide a visual insight into the computations.
In particular, the area under the curve of imaginary part Wy (z) basically determines the
extent of the growth rate.

Further studies may elaborate on more complicated wave forms other than the typically
used simple sinusoidal form. For instance, a group of waves representing the random
nature of waves or Stokes waves involving nonlinear aspects of the problem as in Sajjadi,
Hunt & Drullion (2016) may be among the possible directions for future work.
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