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Abstract

A weakly-nonlinear and dispersive wave equation recently de-
veloped by the authors (Beji and Nadaoka, 1997) is used for
formulating a spectral wave model describing transformations
of narrow-banded unidirectional waves traveling over variable
bathymetry. The performance of the model is tested against the
measured data for harmonic generation over constant depth as
well as nonlinear random wave propagatlon over varying depth.
The comparisons indicate good agreement with the measurements
and establish the reliability of the model. In closing, a semi-
empirical dissipation term is formulated for simulating the energy
loss due to breaking waves.
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1. Introduction

Recent years have witnessed a constantly increasing interest
towards the modeling of the nonlinear aspects of ocean waves.
The trend originated from the need to explain definite observa-
tions which could not be accounted for by linear models. Wave
skewness related sediment transport, influence of breaking on the
surf-zone processes, and effects of harmonic generation on the
characteristics of a wave field are the most striking examples of
such phenomena (Doering and Bowen, 1986; Nadaoka et al., 1989;
Kojima et al., 1990). For practical applications the nonlinear
wave models are not yet in common use, -however, there are ev-
idences that when augmented with appropriate generation and
dissipation mechanisms, these models may well be the prototypes
of the commercial models to come.

In this work a spectral model is developed using the recently in-
troduced wave equation of Beji and Nadaoka (1997). The deriva-
tion is based on a Fourier series representation of the surface
elevation with spatially varying amplitudes and phases. The re-
sulting evolution equations are numerically solved for various test
cases to demonstrate the capabilities of the model. Also, a semi-
emprical dissipation term is formulated to represent energy loss
due to wave breaking.

385

2. Wave Model and Spectral Formulation

The present work uses a nonlinear unidirectional wave equation
(Beji and Nadaoka, 1997) which may be viewed as a generalized
form of the Korteweg and deVries (KdV) equation:
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where Cp, Cy, and k are respectively the phase and group ve-
locities and the wave-number computed according to the linear
theory dispersion relation for a dominant wave frequency w and
a given local depth h, the subscripts z and t indicate partial
differentiation with respect to space and time, respectively.
Unlike the KdV equation, the applicable domain of equation

. (1) is not restricted to only shallow waters but covers the entire

range of relative depths from very shallow to infinitely deep wa-
ter. For relatively shallow water waves the equation renders the
KdV equation as its special case and for deep water it admits the
second-order Stokes waves as solution. When the incident wave
frequency coincides with the prescribed dominant frequency of
the model equation the linear shoaling characteristics of the in-
cident wave are described exactly, in accordance with the energy
flux concept.

Since the form of equation (1) resembles very closely to the
KdV equation it is possible to adopt all the numerical methods ap-
plicable to the KAV equation. The most straightforward approach
is to use finite-difference approximations, as reported by Beji and
Nadaoka (1995, 1997). Here, the so-called spectral domain for-
mulation is employed by representing the surface displacement as
a Fourier series with spatially varying harmonic amplitudes:
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where Ap(z) is the spatially varying complex wave amplitude, wy,
the radian frequency which is equal to nAw, Aw being the fre-
quency of resolution. kn(z) is the spatially varying wave-number



determined according to the linear dispersion relation of equation
(1) for the local depth A(z) and the radian frequency wn:
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Substituting (2) into (1; and neglecting only the third-order spa-
tial derivatives of A (z) on the premise that the spatial variation
of An(z) is slow, result in the following second-order nonlinear
differential equation that determines the spatial variation of each
complex component:
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where the free index n covers the range from —oco to +o0c. The
coefficients are given as follows
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in which the spatial derivatives of k, higher than the first have
been neglected as in the wave model itself. (k,); appearing in
a; is computed from (3) by differentiating it with respect to z.
Note that ¢ is the linear dispersion relation of the wave model
and is identically zero in virtue of equation (3). However, if the
wave numbers in (2) are selected as bound wave numbers then ag
is not zero any more and it must be retained. In principle, the
wavenumbers may be chosen either way, here they are selected as
free wave numbers according to (3), which numerically proved to
be a better choice except in the simulation of the Stokes second-
order waves.

Following Bryant (1973) we multiply (4) by — = exp (—iStz)

so that it becorhes
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where ap has been set to zero. The spatial variations of the
linear shoaling term a A, and the nonlinear terra A;pAn-m are
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relatively slower and therefore these terms may be assumed locally
constant, which in turn allows an integration of (6) with respect
to z:
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It should be remarked that the linear shoaling characteristics of
the generic equation are exactly preserved in the above formula-
tion.

Equation (7) in its present form is not suitable for numerical
treatment and should be manipulated further. The summations
are first re-a.rran.ged to run in the positive range only. Then, a
change of variable is introduced A,(z) = P, (a:)acp (l. fkndz),
which removes the sine and cosine functions as in Bryant (1973).
Finally, P,(z) is set to & slan(z) — ibn(z)] so that the evolution
equations for the real variabl&s an(z) and by (z) are obtained
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For N number of frequency components, the free index n runs
from 1 to N, resulting in 2N number of nonlinearly cou-
pled first-order differential equations for the unknown compo-
nents an(z) and bn(z). Once the an(z)s and bn(z)s are ob-
tained the free surface may be constructed simply as n =
Ta, cos(wnt) + by sin(wpt). Various numerical integration
techniques (é.g., Bulirsch-Stoer, Runge-Kutta, Adams-Bashford-
Moulton) are available for the integration of (8) and (9). Here, the
Runge-Kutta fourth-order formulation is preferred as it proved to
be the fastest while being as reliable as the other more sophisti-
cated integration methods.

3. Numerical Simulations

The evolution equations derived in the previous section are
now used for the purposes of ascertaining their reliability and
exploring the capabilities of the wave model. The first case is the
simulation of harmonic generation in shallow water.



3.1, Hermonic Generation in Shallow Water

Chapalain et al. (1992) conducted a series of experiments con-
cerning nonlinear shallow water waves undergoing harmonic gen-
eration over constant water depth. The experiments were done for
four different cases named respectively as the trial A, C, D, and
H. The experimental conditions and wave parameters are given
in Table 1.

Trial h(em) T(s) e=ao/h p=kh U.=c¢/p?
A 40 2.5 0.105 0.528 0.38
C 40 3.5 0.105 0.371 0.76
D 30 2.5 0.118 0.452 0.58
H 40 3.0 0.084 0.433 0.45
Table 1

All the experiments listed in Table 1 are numerically simulated
using the evolution equations given by (8) and (9). Figure 1shows
the simulated and measured harmonic components for the trials
A, C, D, and H, respectively. Overall, the numerical simulations
agree well with the measurements and establish confidence in the
spectral model. The beat lengths are slightly underestimated;
this is probably due to the limitation of the wave model to rela-
tively narrow-banded cases. Since the third and fourth harmonies
fall outside the narrow-band range of the primary wave this re-
striction is somewhat violated.
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Figure 1: Experimental data of Chapalain et. al {1992) compared
with the predictions of the spectral model for the trial A, C, D, and H.
Scatter: experiment, solid line: computation.
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3.2. Nonlinear Wave Transformaiions over A Submerged
Bar

Nonlinear wave transformations over a submerged bar were in-
vestigated by Beji and Battjes (1993) in laboratory experiments
that revealed the determining factors shaping the transformed
wave spectrum. The waves were first observed to undergo har-
monic generation due to nonlinear interactions in the shoaling
region and then the generated bound harmonics were released
behind the bar as the water depth increased again. For rela-
tively long waves it was observed that an initially narrow-banded,
sharply peaked spectrum was transformed to a broad-banded,
double-peaked spectrum. On the other hand, the short wave evo-
lutions were found to be not substantial. The details about the
experimental setup and conditions can be found in Beji and Bat-
tjes (1993).

The experimental measurements for long and short sinusoidal
waves and for random waves with initially JONSWAP type spec-
tral shape are simulated using equations (8) and (9). Figures
2a and 2b show the comparisons with the experimental measure-
ments respectively for long and short periodic waves at six dif-
ferent stations. The Fourier components of the recorded surface
displacement at Station 1 (not shown) serves as the incoming
boundary condition. In the computations five harmonic compo-
nents w, = nwg,n = 1,...,5 were used with wy corresponding
to the primary wave frequency. As it is seen from the figures the
model predictions agree very closely with the measurements both
for the wave profiles and phases. The only exception is Station 7
of figure 2a, where obviously the narrow-bandedness of the wave
model itself prevents a complete agreement.
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Figure 2a: Comparisons of the experimental measurements of ini-
tially sinusoidal wave propagation over a submerged bar (-) with the
numerical simulations (+) for T = 2 s waves. Station 2: upslope
1:20, water depth 0.16 m, station 3 and 4: horizontal bottom, water
depth 0.1 m, station 5: downslope 1:10, water depth 0.18 m, station
6: downslope 1:10, water depth 0.3 m, station 7: horizontal bottom,
water depth: 0.4 m.
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Figure 2b: Same as in figure 2a but for T = 1.25 s waves.
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Figure 3: Comparisons of the experimental measurements (-) of the
spectral evolutions over a submerged bar with the computations (+) for
TJ, = 2 s random waves.

Figures 3 and 4 depict the same comparisons for random waves
having JONSWAP type incident wave spectrum with peak peri-
ods of Tp = 2 and Tp = 1.25 seconds, respectively. The records of
the surface elevation at station 1 were divided into 40 segments of
512 data points and then each segment was Fourier transformed.
Out of the 256 unique pairs the first 60 Fourier components, which
covered a frequency range of 0.05-3.0 Hz, were found to be quite
sufficient to represent the incident wave spectrum hence the spec-
tral model was run for 40 different realizations with N = 60 using
the measured Fourier components as the incoming boundary con-
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dition at station 1. The spectra shown in figures 3 and 4 were ob-
tained after ensemble averaging all the realizations; no frequency
averaging was done. Each spectrum has 80 degrees of freedom
and 16 % normalized standard error. The overall agreement is
good for both sets of measurements and the small discrepancies
are attributed to the inherently narrow-banded nature of the wave
model, which manifests itself as errors in the wavenumbers well
outside the neigborhood of the primary wave wavenumber, which
was taken to correspond to the peak period of the incident wave
field.
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Figure 4: Same as in Figure 3 but for Tp = 1.25 s random waves.
4. Inclusion of Wave Breaking Effect

A semi-empirical approach is now considered to account for
the dissipative role of wave breaking so as to render the spectral
model operational even for breaking waves. To this end we first
refer to Battjes’(1986) dissipation model for periodic waves:

aP . D' B pgH? (H\*
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where p is the water density, g the gravitational acceleration, H
the wave height, T the wave period, P = EC|; the energy flux
with Cy = (gh)*/? (shallow water), and B and 7 the calibration
parameters.

Equation (10) is applicable only to shallow water waves and it
is desirable to extend it to deep water so that it will be in accord
with equation (1), which is valid for arbitrary depths. Thus, we
propose the following generalized form of (10) as the dissipation

model
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in which the linear shoaling term implicitly present in (10) has
been removed since the wave model itself includes the linear shoal-
ing properly. Note that instead of the term H /A in equation (10)
we have introduced the term gH/CZ2, which for shallow waters
reduces to H/h. For deep water when h is very large H /h van-
ishes (so does the dissipation term D) and predicts no dissipation
effect. On the other hand, for deep water the term gH/ C: tends
to kH and still predicts a non-zero dissipation due to breaking so



long as the deep water wave steepness kH is appreciable. Obvi-
ously, this feature accords well with the expectations and agrees
with Miches’ breaking criteria (Beji, 1995).

If the wave is represented as a(z ) cos ¢+b(z) sin ¢, ¢ being the
phase angle, then, according to (11), the spatial rates of reduction
of the amplitude components due to breaking are
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respectively for a(z) and b(z). Of course this formulation is true
only for simple sinusoidal wave forms. The evolution equations
contain not only a single component but a number of higher har-
monics. It is therefore necessary to introduce some approxima-
tions to use equation (12) in (8). A plausible approach is to
assume that each harmonic component is dissipated according to
(12). This idea is also supported by the experimental measure-
ments of Beji and Battjes (1993). Thus, for the wave breaking
dissipation portions of (8) and (9) one can write
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in which the wave height for each compon-t is computed from
Hp = 24/(a2 + b2). Thus, the final evolution equations are
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For a simple demonstration we compare the results of the numer-
ical solution of (14) and (15) with the exact solution of equation
(10) (Battjes’s (1986) original medel which can be solved analyt-
ically for constant depth) for the experimental measurements of
Horikawa and Kuo (1966) for breaking waves over a horizontal
bottom. To account for the effects of modifications made it was
necessary to select a slightly different value for the parameter B.
Battjes (1986) uses B = 2, but since always ¢H/CE > H[h
and /gh > Cyg, this value gives higher dissipation rate for the
generalized model. After a few trials, B = 1 was found to be
sufficiently good. Figure 5 shows the comparisons for A = 0.1
m depth and Hp/h = 0.8 for the linearized equations, that is,
when N = 1 in (14). The agreement with the Battjes’ (1986)
original model is good and supports the validity of the approxi-
mations made in deriving (12). When compared with Horikawa
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and Kuo’s (1966) data it is clear that the model predictions fall
in the range given by these authors.
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Figure 5: Wave height decay due to breaking over a horizontal
bottom. The experimental conditions are from Horikawa and Kuo's
(1966) measurements: h = 0.1 m and Hp/h = 0.8, H}, is the initial
breaking waveheight.

5. Concluding Remarks

A spectral domain formulation of a recently developed non-
linear wave model is presented in the form of nonlinearly cou-
pled first-order differential equations. The evolution equations
describe the linear shoaling and second-order nonlinear transfor-
mations of each spectral component over arbitrary depths. Vari-
ous tests are performed to check the performance of the proposed
evolution equations against the measurements and the model is
found to be sufficiently reliable for practical use. Furthermore, a
semi-empirical formulation is suggested to account for the dissi-
pative action of wave breaking. The proposed dissipation model
works well for linear periodic waves; results for nonlinear random
waves will be reported later.
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