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ABSTRACT

A numerical scheme for an improved Boussinesq model is developed for
simulation of nonlinear, short-crested wave transformations over slowly
varying depths. The governing equations are discretized by three-time level
finite-difference approximations to achieve an accurate treatment of the
nonlinear terms. A higher order radiation condition is implemented for
effective absorption of the outgoing waves. Ring test and wave propagation
over a topographical lens are included as sample computations demonstrating
the performance of the model.

INTRODUCTION

Due to strong interactions with bottom topography, waves observed in the
surf zone are almost. always nonlinear, and as it is obvious from the
frequent occurrence of white-capping and breaking, nonlinearity is usually
quite high. Any realistic modeling of these waves must therefore account
for the nonlinear interactions, just as it must consider the eventually

dissipative role of breaking.
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At present weakly-nonlinear weakly-dispersive wave models, namely the
Boussinesq type models, appear to be the most promising ones for practical
applications. These depth-integrated equations at once reduce a three-
dimensional prnh'lnm to the solution -of an equiValent (within the

approximations made) two-dimensional problem. Such a reduction in dimension
provides significant savings in computation time as well as a certain
robustness originating from the simplified numerical procedure.

Despite these advantages the classical Boussinesq equations suffer from the
inherent disadvantage of being shallow water equations. To extend their
applicable range numerous attempts have been made (see the references in
Nwogu, 1993). Here we shall use one such an improved model due to Beji and
Nadaoka (1994), which might be viewed as a rectified version of Madsen and
Sgrensen’s (1992) work. Accordingly, the dispersion characteristics of the
nrasent model are improved to the extent that waves with wavelengths equal
to depth may be represented with acceptable errors in amplitude and
celerity. However, for a varying depth the linear shoaling is accurate only
if the depth to wavelength ratio at the incoming boundary is less than %,
as demonstrated by Beji and Nadaoka (1994).

The governing equations are discretized by a three-time-level finite-
difference approach so that the nonlinear terms could be treated as quasi-
linear contributions. The second order radiation condition of Engquist and
Majda (1977) is implemented for a better absorption of the directional
waves and found to be quite satisfactory.

GOVERNING EQUATIONS

The improved Boussinesq equations of Beji and Nadaoka (1994) are chosen as
the wave propagation model. The derivation procedure and details about the
dispersion and linear shoaling properties of these equations can be found
in this particular reference. The continuity and momentum equations are

n.+V. [(h+n) gl =0, (1)

g.+(g.9)g+g¥n=(1+p) AVIV. (ng,) ] +p-ZEVIV. (hVn)]
(2)

= (1+i3)'h?2vw.qc) -p%{)’—sz.vn} )

where q=(u,v) is the two-dimensional depth-averaged velocity vector, g is
the surface displacement, h=h(x,y) is the varying water depth as measured
from the still water level, g is the gravitational acceleration, and B is
a constant. The subscript t stands. for partial differentiation with respect
to time and ¥ for the horizontal gradient operator. The z-axis is taken
vertically upwards with the origin at the undisturbed free surface.
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In linearized forms equations (1) and (2) lead to thé following dispersion
relation

&R (1+Ppk*h?/3) (3)
gh [1+(1+P) k?hn?/3] "’

where c=|c| is the phase speed, k:=kf+kz and kps are the components of
wave-number vector k in the x- and y-directions respectively.

Matching equation (3) with a first-order Padé expansion of the linear
theory dispersion relation requires B=0, which in turn reduces equation (3)
to the classical Boussinesq dispersion relation. On the other hand, an
expansion correct to the second-order dictates f=1/5, and naturally results
in better agroomant with the avarct form of the linear theory dispereinn

relation. Here, B=1/5 is used in all computations.

In this connection it is worthy of remark that quite recently Nwogu (1993)
has introduced an alternative procedure to ‘improve the dispersion
characteristics of the Boussinesq type equations. These equations, though
different in form from (1) and (2), by choice may have the same linear
dispersion curve. Their numerical solution for several cases was found to
produce almost identical results with those of (1) and (2); however the
non-conservation form of the continuity equation required special handling
(specifically, it had to be discretized in a pseudo-conservation form) for
obtaining accurate results. This approach however was not trouble-free and
brought problems in the immediate vicinity of the boundaries.

BOUNDARY AND INITIAL CONDITIONS

Boundary Conditions

Boundary conditions at the rigid impermeable bottom and the free surface
are automatically satisfied by the governing equations. It then remains to
specify the conditions at the boundaries vertically enclosing the physical
domain of interest. Boundaries along which incident waves are introduced
are quite easy to deal with. Simply, velocity components and the
corresponding surface displacement as computed from the continuity equation
are specified (or vice versa). If the waves maintain a constant phase speed
¢, one can easily derive the following exact analytical expression from
equation (i):

= h(q.d) 4
n Te-q.d) ' (4)

where d is the direction vector with components (cosB8,sinB). Here 8 is the
angle between the wave propagation direction and the positive x-axis.

Besides the incoming boundary condition, two boundary conditions are of
particular interest; namely, radiation condition and reflection condition.
The latter does not pose any serious problems whereas the former demands
special care and is often the most troublesome part of a numerical modei.
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A perfectly absorbing boundary condition for waves approaching at an
oblique angle to a boundary would be

g, +(e.V)g=0, ) (5)

which implies that t%e Ge}ocity figld is convected away at the constant
phase celerity lc|=(cx+c ¥ with c.= c:.cosB, ¢,= c:sinB being the components
of the wave-celerity vector ¢ in the x- and y-directions respectively.
However, the implementation of (5) is not trivial as it is a non-local
boundary condition; that is, it requires information (the incident wave
angle) from the interior points of the computational domain. In general it
is quite difficult to compute the outgoing wave angle and the accuracy is
not ascertained. It is therefore preferable to have a local boundary
condition which does not require extra information from the interior points
but has the capability of absorbing the obliquely incident waves with
minimum reflection. To this end we refer to Engquist and Majda (1977) who
iniroduced a systematic approach which can produce successively higher
order absorbing boundary conditions. For a non-dispersive wave equation Wy~
Wi W =0 (here w represents either velocity or surface displacement) their
first-order approach leads to the well-known Sommerfeld radiation condition
which is appropriate for normally impinging waves. The second-order
approximation on the other hand produces the following formula for waves
traveling in the positive x-direction.

wtt+th~%wyy=0. (6)

At the lowest order, when combined with (1), equatiom (2) is equivalent to
the non-dispersive wave equation with a wave propagation celerity ec=vVgh.
It is then a plausible approximation to use the dimensional form of
equation (6) with the celerity c=Ygh as the radiation condition in solving
equation (2). Thus, for waves propagating in the positive x-direction with
the phase celerity c we employ the following radiation condition for the
x-component of the velocity q(u,v):

1
ucc"'cuxt"iczuyy:o' (7)

If the waves are moving in the negative x-direction the sign in front of
the second term reverses. The expressions corresponding to the y-component
of the velocity are analogous.

Initial Condition

All computations are started by specifying u, v, and n over the entire
domain for the first two time levels. Except for the ring test which is
presented later as an example, the initial condition is the state of rest;
that is, both the velocity field and the surface displacement are zero
throughout the domain.
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DISCRETIZATION

Discretization of Governing Equations

Beginning with the remarkable contribution of Peregrine (1967) the works
on the finite-difference modeling of the Boussinesq equations appear to
adhere to the two-time-level approach (Abbott et. al., 1373, Schaper and
Zielke, 1984, Madsen and Sgrensen, 1992, Beji and Battjes, 1993). The main
problem in these models is the accurate treatment of the nonlinear terms,
which are to be evaluated at the mid-time level if the scheme be fully
centered (see Abbott et. al., 1984 for a detailed exposition). For the
improved type Boussinesq equations the problem is augmented as extra terms
proportional to the spatial derivatives of the surface displacement come
into picture. Like the nonlinear terms these linear dispersion terms must
be evaluated at the mid-time level as well.

A straightforward alternative to bypass all these difficulties presents
itself as a three-time-level formulation. The original idea probably dates
back from Zabusky and Kruskal’s (1965) well-known work on the KdV equation.
In a three-time-level formulation no special care is needed for the mid-
time level values since they are known as an essential part of the entire
process. The only burden comes from keeping the third-time-level values in
memory, which is a rather small price for the accuracy and computational
speed gained. For the reasons indicated a three-time-level approach is
employed here; both space and time derivatives are centered and f, U, v are
all placed at the same grid points, according to the pure leap-frog method.

To reduce the computational effort the solution process is decoupled so
that only one variable is solved along each row or column until the entire
domain is covered. Accordingly, the x-momentum equation is solved for u,
the y-momentum equation' for v. Such artificial decoupling of course
necessitates some approximations and these are indicated below. Continuity
equation does not require any additional approximation as it is possible
to implement a simple explicit discretization. For brevity, only time
derivatives are given in discretized forms. All spatial derivatives are
approximated by central difference formulations. The x-sweep equation is

(uki-ykz) ht (ugt-ug! (ur*'-ur™)
2A¢ (Z+B) 1= 2AE G T

hd vl Y=vlt)

1
=-gmxm g (utevilie (10) S =
(8)
e+l Je-1 e+l k-1
1 (Vy _Vy ) ( X _Vx )
v (1B b —Sp— s hhy — )

2
+Bgh (nEarny) +Bah (Bnker hnb e Lhnk)

in which the superscript k denotes the time level. Note that to improve the
computational accuracy the nonlinear terms are re-expressed by using the
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irrotationality condition uv=v:. The new time level values of v appearing
on the right-hand side o{f(li) are treated as known by using the last
computed values so that ut*’s are the only unknowns. The resulting matrix
equation is tridiagonal and can be solved very efficiently by the Thomas
algorithm (see Huyakorn and Pinder, 1983). Similarly the y-sweep is

k+1 k-1 k+1 k-1
i st h? (Vy ~Viy ) (vy” -vy )
2At (=Pl 15 Y Sy v
k_1 k n? (uet-ul?)
=—gny-3(u2+v2)y+<1+5) = __E_YZ_A..E.L
(9)
kel _, k-1 k+1 k-1
1 {uy™-uy™) (uy™t-u,™?)
v3 @Ry —— e — g

2
+B ghT (Nyy+nke) +Bgh (Byn}y+ Zhnk+ %hynfm)

. . k1, (31 1 k1,
in which v"""’'s are the only unknowns. The u"'’s and subsequently v ’s
obtained from respectively (8) and (9) are of course only a first estimate
since these variables are computed separately. It is therefore necessary
to iterate to obtain accurate results. For the computational tests
presented later a single iteration was found to be sufficient but more
complicated problems may require two iterationms. ’

The surface displacement is obtained from a simple explicit discretization
of the continuity equation:

Jﬂ:;i%ijl'*t(h*n)”]i*[(h*ﬂ)vli- 0. . (10)

Discretization of Radiation Condition

Equation (7) is discretized as central differences in time and backward
differences in space:

k- k - 2 oy
uf-utput) | (lult) - afd-uty)
A2 2AxAt
(11)
(ugfyo-2ufyrudy) -
AL az YU 4 1-21 3917 _p for i=n,
2 Ay

where i and j label the spatial points in the x-y Cartesian system. Note
that equation (11) is valid for waves propagating in the positive x-
direction. For waves moving in the negative x-direction and the y-direction
the discretization procedure is completely analogous and is not repeated.

‘Strictly speaking this is not valid for a varying depth but an acceptable approximation. See Peregrine (1967).
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NUMERICAL SIMULATIONS

The performance of the numerical scheme described above is now illustrated
for two selected cases. The first case is the ring test with a two-fold
purpose. The first is to check the symmetrical accuracy of the numerical
model and the second is to compare the first and second-order radiation
conditions. A surface elevation of solitary-wave shape is initially imposed
and then the computation is let to proceed on its due course. The initial
wave height to depth ratio is 0.3. The computational area is 2m x 2m, which
is discretized by 50 points along both x- and y-axes. The time step is 1/25
second. The left column in Figure 1 shows the computational results with
the first-order boundary condition at t=4, 1, and 2 seconds respectively.
On the right column the corresponding results with the second-order
boundary condition are depicted. As it is obvious from the surface profiles
at t=2 seconds the first order boundary condition is inferior, especially
at the corners of the computational domain where the radiating wave angle
is sharpest.

The second case is the computation of wave convergence over a bottom
topography that acts as a focusing lens (Whalin, 1971). This test serves
as a check on the performance of the numerical scheme itself in handling
a complicated bathymetry and has been used frequently (see for instance Liu
et. al., 1985). Figure 2a shows a perspective view of the wave field.
Figure 2b compares the computed harmonic amplitudes with the measured data
(reproduced from the work of Madsen and Sprensen, 1992) along the
centerline of the wave tank. The computation was performed with Ax=Ay=10/50
m (luis the wavelength at the incoming boundary) and At=T/50 second, which
rendered the initial Courant number unity. The incident wave period is T=2

seconds.
CONCLUDING REMARKS

The performance of the numerical model appears to be good both in terms of
accuracy and computational time. Use of the three-time-level formulation
not only makes it possible to treat the nonlinear terms in the most
straightforward manner but also shortens the computational time
considerably by permitting an explicit formulation of the continuity
equation as completely decoupled from the momentum equations. It must be
indicated however that these advantages are purchased at the expense of
additional storage necessary to keep the third time level values in memory.

Absorption of the outgoing waves that approach in multitude of directions
is a delicate problem. The higher order radiation condition used here, as
demonstrated by the ring test, is found to be reliable even in simulations
with acute angles of wave radiation.

Since the merits of a numerical model cannot be judged without testing
against field data, the eventual approval or disapproval of this model
awaits such comparisons.
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A perspective view of the wave field
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Variation of the harmonic amplitudes along the centerline
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