Uluslararası Bilimsel Dergi Makaleleri

  1. Improved Boussinesq-type equations for spatially and temporally varying bottom Beji Coastal Eng JII 18
  2. A fundamental relationship of polynomials and its proof Beji APM 18
  3. Statistical analyses of wave height and wind velocity distributions for the Sea of Marmara Erdik Beji IJEGEO 18
  4. Kadomtsev-Petvisahvili type equation for uneven water depths Beji Ocean Eng 18
  5. Kadomtsev-Petvisahvili type equation for entire range of relative water depths Beji Coastal Eng J 18
  6. Computational resistance analyses of a generic submarine hull form and its geometric variants Budak Beji JOT 16
  7. Improved Korteweg & de Vries type equation with consistent shoaling characteristics Beji Coastal Eng 16
  8. Rip current fatalities on the Black Sea beaches of Istanbul and effects of cultural aspects in shaping the incidents Barlas Beji Natural Hazards 16
  9. Improved explicit approximation of linear dispersion relationship for gravity waves Beji Coastal Eng 13
  10. Numerical simulation of waves generated by a moving pressure field Bayraktar Beji Ocean Eng 13
  11. A systematic approach to the exact roots of polynomials Beji Mediterr J Math 08
  12. Boundary-fitted numerical model for computing linear and nonlinear wave forces on bottom-mounted piles Barlas Beji App Ocean Res 06
  13. Fully dispersive nonlinear water wave model in curvilinear coordinates Beji Nadaoka J Comp Physics 04
  14. Boundary-fitted non-linear dispersive wave model for regions of arbitrary geometry Beji Barlas Int J Numer Meth Fluids 04
  15. Solution of Rayleigh’s instability equation for arbitrary wind profiles Beji Nadaoka J Fluid Mech 04
  16. A spectral model for unidirectional nonlinear wave propagation over arbitrary depths Beji Nadaoka Coastal Eng 99
  17. Note on conservation equations for nonlinear surface waves Beji Ocean Eng 98
  18. A time-dependent nonlinear mild-slope equation for water waves Beji Nadaoka Proc R Soc Lond A 97
  19. A fully dispersive weakly nonlinear model for water waves Nadaoka Beji Nakagawa Proc R Soc Lond A 97
  20. A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth Beji Nadaoka Ocean Eng 96 Authors’ reply Beji Nadaoka Reply Ocean Eng 98
  21. Note on a nonlinearity parameter of surface waves Beji Coastal Eng 95 Kirby’s discussion Kirby Discussion Coastal Eng 98 Beji’s closure Beji Closure Coastal Eng 98
  22. Experimental verification of numerical model for nonlinear wave evolutions Ohyama Beji Nadaoka Battjes J Waterway Port Coastal Ocean Eng 94
  23. Numerical simulation of nonlinear wave propagation over a bar Beji Battjes Coastal Eng 94
  24. Experimental investigation of wave propagation over a bar Beji Battjes Coastal Eng 93
  25. Investigations on cubic polynomials Beji Int J Math Ed Sci Tech 92